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Abstract

This investigation introduces a novel approach for online build-order optimization

in real-time strategy (RTS) games. The goal of our research is to develop an artificial

intelligence (AI) RTS planning agent for military critical decision-making education

with the ability to perform at an expert human level, as well as to assess a players

critical decision-making ability or skill-level. Build-order optimization is modeled as a

multi-objective problem (MOP), and solutions are generated utilizing a multi-objective

evolutionary algorithm (MOEA) that provides a set of good build-orders to a RTS planning

agent. We define three research objectives: (1) Design, implement and validate a capability

to determine the skill-level of a RTS player. (2) Design, implement and validate a strategic

planning tool that produces near expert level build-orders which are an ordered sequence

of actions a player can issue to achieve a goal, and (3) Integrate the strategic planning tool

into our existing RTS agent framework and an RTS game engine. The skill-level metric

we selected provides an original and needed method of evaluating a RTS players skill-level

during game play. This metric is a high-level description of how quickly a player executes

a strategy versus known players executing the same strategy. Our strategic planning tool

combines a game simulator and an MOEA to produce a set of diverse and good build-orders

for an RTS agent. Through the integration of case-base reasoning (CBR), planning goals

are derived and expert build-orders are injected into a MOEA population. The MOEA then

produces a diverse and approximate Pareto front that is integrated into our AI RTS agent

framework. Thus, the planning tool provides an innovative online approach for strategic

planning in RTS games. Experimentation via the Spring Engine Balanced Annihilation

game reveals that the strategic planner is able to discover build-orders that are better than

an expert scripted agent and thus achieve faster strategy execution times.
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ONLINE BUILD-ORDER OPTIMIZATION FOR REAL-TIME STRATEGY AGENTS

USING MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS

I. Introduction

This research serves to enhance strategic decision-making education by advancing

artificial intelligence (AI) in computer generated forces for real-time strategy (RTS) games.

Real-time strategy games provide a problem domain that is characterized as uncertain,

dynamic, partially observable, and stochastic [16]. These characteristics make RTS games

well suited for real-time decision-making military education because these qualities also

well characterize real-world military events. The following sections present our research

goal and objectives.

1.1 Military Education

The military employs numerous methods to educate and evaluate personnel in areas

such as job competency, planning, and decision-making. A large portion of military

education encompasses leadership and critical decision-making. Common decision-

making techniques military personnel are equipped with include the Observe Orient Decide

Act (OODA) model [49] and the Military Decision-Making Process (MDMP) [25]. Using

AI agents in an RTS game environment enables new capabilities for military education

including real-time dynamic content changes, adjustable challenge levels, and tailored

content to individuals based upon skill level [63].

1.2 Real-Time Strategy Games

The RTS genre dates back to 1982 with the Cytron Masters strategy game released for

the Apple II. Cytron Masters places two opponents on a twelve by six grid-map. Players
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engage one another as opposing commanders, gathering electricity from generators to build

units to destroy the opposing player’s army. By today’s RTS standards, Cytron Masters is

more like a chess match given the small grid-map and limited number of units to control.

However, the idea of real-time resource gathering and unit creation managed by a player

acting as a commander is a motif shared by most modern RTS games.

Today’s RTS games play-out as large scale war campaigns (Figure 1.1). Players

begin with limited supplies and no army. From the start of a match, players must quickly

orient themselves to their surrounding environment, similar to what the OODA decision-

making model teaches military personnel, locate resources and identify enemy positions.

In general, players must manage the simultaneous collection of two to three resources

throughout the game in order to build their armies and advance their army’s wartime

capability through technology advancements. In addition to combating opposing armies,

the players must also manage their home base or township (depends on the RTS game).

In general, this involves construction of houses/barracks to provide room and board for

soldiers and workers, balancing the work efforts of worker units to satisfy resource needs,

base defense, research, and construction of critical buildings. How the player chooses the

actions or decisions to make as they race the opposing player to victory is determined by

the player’s strategy.
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Figure 1.1: Balanced Annihilation: Yellow army versus Blue army.

Most RTS games have well developed strategies that the community of gamers agree

upon. In general, these strategies take form because of the efforts of game designers

to ensure balanced, challenging, and fun game matches. An example is the Starcraft

community. Starcraft is an RTS series which currently possesses two installments:

Starcraft: Broodwars and Starcraft II: Wings of Liberty. Broodwars is the first of the series

and is greatly utilized by the AI RTS research community for designing and evaluating

various AI algorithms for use in non-deterministic, partially observable environments [7]

[16][65].

As mentioned previously, RTS players attempt to advance the skills and technology

of their armies in order to over power their opponent. This technology advancement is

defined in the technology tree of an RTS game. A technology tree is a large decision tree

that determines the execution of a player’s selected strategy. It establishes an ordering of
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actions a player must take in order to build and advance their army. Therefore, once a

player selects a strategy, they must proceed with execution of the strategy by taking actions

in the ordering stipulated by the technology tree. This leads to the idea of build-orders.

In an RTS game, a build-order is an ordered sequence of actions a player takes to

execute their chosen strategy. Strategies are not static, often times players will blend

or modify their strategy as game-play advances; however, for illustrative purposes it is

more concise to assume a player executes one specific strategy. A strategy is generally

broken into a set of sub-goals. Between each sub-goal is a unique build-order to move

a player from one goal to the next. A goal is related to training a large army, researching

technology to improve army abilities or collecting resources required for advancing through

the technology tree. By the end of a game session, a player has achieved a set of goals by

executing a set of build-orders.

Strategy execution is a planning problem requiring two components: firstly,

determining a good goal-ordering to ensure expert level execution of a strategy with

respect to resource allocations and time to execute the strategy; and second, issuing and

executing actions in a build-order to ensure expert or near-optimal player performance-

again measured in resource allocations and time to reach a goal. With respect to providing

an artificial agent with the ability to rationalize across this planning problem, the first

component involving goal-ordering can be determined by deriving a goal-ordering from

the replays of an expert RTS player [67] [45] and then provide this to the agent via case-

based reasoning (CBR). Resolving the second component is known in the RTS research

community as the build-order optimization [22] problem and is the focus of this work.

1.2.1 Near-Optimal Build-Orders in RTS Games.

This investigation includes the development of an agent that optimizes strategy

execution in order to perform at an expert human level; therefore, we make the assumption

that the build-orders generated by an expert player are near-optimal. The objective of our
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planning tool is to produce build-orders that are as good as or better than expert build-

orders or near-optimal. Rather than use the term ”optimal” to describe the build-orders

produced by our planning tool, we instead evaluate our build-orders to how much better

they perform versus a human expert level build-order. The comparison of our produced

build-orders versus expert level build-orders is conducted relative to the objective functions

of our build-order problem formulation presented in chapter 3.

1.3 Research Goal

Our goal is to develop an AI RTS planning agent for critical decision-making

education. This goal is motivated by an overall vision to build an RTS agent and an RTS

game framework to evaluate a player’s leadership and decision-making abilities.

1.4 Research Objectives

To achieve our goal the following research objectives are defined. Italicized objectives

are research objectives that have been completed by predecessors to this current effort. The

bold objectives, including 1a,2a and 2g, are the areas of contribution of this work:

1. Construct a complete player model of an RTS player to be utilized by an RTS AI

agent.

(a) Develop (design, implement and validate) an online capability to determine

the skill level of an RTS player

(b) Develop an online capability to classify the strategy of an RTS player[61].

2. Develop an AI RTS agent to perform interactively at an expert RTS game

playing level using opponent’s skill level

(a) Develop an online RTS multi-objective AI planning algorithm for generat-

ing human expert level RTS build-orders [22]

(b) Determine interactively RTS player’s game-playing strategy
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(c) Generate human expert level RTS tactics

(d) Dynamic content injection into RTS game

(e) Adjust difficulty settings based upon player’s dynamic skill level

(f) Tailor feedback to player in real-time to enhance critical decision-making

education

(g) Integrate on-line planning tool with an agent in the Spring RTS game

engine Balanced Annihilation game [3] and validate via simulation.

1.5 General Approach

The approach taken toward developing our planning agent is derived from current

research efforts in the area of AI for RTS games like Starcraft, Wargus, and Balanced

Annihilation. More specifically, AI techniques designed to produce agents that compete at

an expert level in the RTS domain. Utilizing a multi-scale agent approach [27] our focus is

on optimizing the performance of the strategic decision-making process of an RTS agent.

The emphasis is on producing a planning tool that is on-line and provides an agent with

build-orders that are equal to or better than expert level build-orders. This is achieved

through a combination of simulation, a well defined approximation model of the build-

order problem, an MOEA, and CBR.

With respect to the first bold objective, 1a, a linear transformation function that

measures the speed of an RTS player’s decision-making process with respect to a known

strategy is developed. This transformation function reduces the number of features required

for a classifier to classify player skill level [9]. The approach provides a high level

description of a players skill level relative to a set of known player skill levels. This enables

the possibility for the use of a hierarchical skill level classification approach for RTS games,

with this technique acting at the highest level and more granular approaches being utilized

at lower levels. This work builds from the RTS strategy prediction work established in [67].
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For objective 2a the RTS strategic decision-making process is framed as a build-order

optimization problem. The build-order problem is modeled as an MOP [24] with three

objective functions and three constraints. The mathematical model of the strategic decision-

making process is then integrated into an RTS game simulator capable of executing

strategic decisions common to generic RTS games including Starcraft: Broodwars [32]

and Balanced Annihilation [3]. The simulator scores build-orders based upon the three

objective functions of the build-order MOP. To generate build-orders, an MOEA framework

in conjunction with the RTS strategic decision simulator is utilized to score a population of

randomly generated build-order plans. To enhance the discovery of near-optimal solutions,

expert solutions are injected into the population of the MOEA framework utilizing CBR.

This results in an RTS strategic planning capability that is online and provides an agent

with near-optimal build-orders. The capabilities of the strategic planner are demonstrated

in the Spring game engine with the Balanced Annihilation RTS game satisfying research

objective 2g.

1.6 Thesis Overview

The following chapters present the accomplishments of this effort. Chapter two

provides a background on current AI techniques utilized for RTS agents and other computer

generated agents. In addition it provides a look into current approaches for measuring the

skill level of an RTS player as well as a discussion on MOEAs. Chapter three discusses

our approach to developing a strategic planning tool and contrasts it with other build-order

techniques. Chapter four describes our experimental approach and the results obtained.

Finally, chapter five provides discussion on future work, and how our current approach can

be enhanced. Our work is the first online build-order optimization technique to model

the build-order problem as an MOP, and to use an MOEA to produce near-optimal

build-orders for an RTS agent.
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II. Background

2.1 Introduction

This chapter introduces key concepts for understanding the work presented in this

investigation. It starts with the employment of RTS games by the military as training and

education tools. Then various AI frameworks are also presented which provide descriptions

of research that has greatly influenced our work. In addition, several player modeling

techniques are discussed in order to establish how to build an RTS player model for

analyzing player performance. Following player modeling is an overview of a multitude of

RTS planning techniques that motivated our research and impacted our design decisions.

Lastly, a discussion on MOEAs and multi-objective problems is presented in order to

introduce key concepts for understanding the build-order MOP presented in chapter three.

2.2 RTS for Education

The United States Air Force has employed several types of RTS games for education

and evaluation at Maxwell Air Force Base. These games supplement learning objectives for

education programs like Air and Space Basic Course ASBC and Squadron Officer School

(SOS) [4]. One wargame in particular is named Tactical Airpower Visualization (TAV) [5].

The game is utilized to reinforce application-level learning with a focus on the Air Force

core competencies [2]. In addition, the game is utilized to evaluate a player/team’s ability

to perform crisis-action planning and decentralized execution [4]. For a presentation on the

utility of games for education refer to [35] [56]. The question becomes how to use RTS

games effectively for educating and evaluating the ability of military personnel to make

decisions. Can such decision making models such as OODA and MDMP be integrated

into an RTS to evaluate a player’s decision making abilities? A challenge to integrating

such evaluation into RTS games is the lack of subjectivity. In terms of leadership, it is
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often said that a decision is better than no decision, so a player should be evaluated on

not only the quality of their decisions, but the timing of a decision. Similar to evaluating

the performance of artificial agents in a task environment, it is better to see a solution

implemented, though it may not be the best, rather than no solution taken at all. This is

often measured in terms of rationality. Therefore a mechanism for measuring a player’s

ability to behave rationally in an RTS game environment must be developed. At a high

level we classify a player’s rationality via skill level as expert, intermediate, or novice.

The first objective of our research requires measuring a players skill level or ability

to rationalize in a simulated task environment with the intention of using this information

for an AI agent. Before metrics are applied to a player, a model of the player must be

developed. Player analysis enables the development of this player model [63]

2.3 RTS AI Frameworks

A goal of current RTS AI research is to develop an agent that performs at the level of

an expert player. This section provides details on where current research techniques are in

reaching this goal. First a definition or model of an expert player is introduced and then

various techniques for approximating this model are discussed.

2.3.1 RTS Expert Player Competencies.

As discussed in [28] [27] [52] there are a set of competencies an expert player is

expected to master. These competencies include strategy execution, tactical maneuvering

of units in battle, resource collection, production of units, buildings and upgrades, and

scouting enemy positions. Each of these are intertwined with one another in that they

introduce competing goals and resource allocation needs. For example, production of units,

buildings and upgrades requires effective resource gathering. Yet even with strong resource

gathering and production, a player without an effective strategy or ability to tactically

maneuver units in battle will lose. Therefore a player must balance these competencies

as needed throughout the game. With all of these factors to consider, an expert player must
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be decisive in their decision making and utilize units and resources effectively. Idle workers

hurt the ability of the player to gather resources and poor planning severely hinder overall

strategy execution.

In addition to the RTS player competencies, Weber [66] presents three capabilities

of expert players in RTS games: estimation, adaptation, and anticipation. Estimation and

anticipation relate to predicting an opponents next action based on an observed strategy the

opponent is executing. Adaptation corresponds to an agent’s planning mechanism in which

an agent adapts its plans in real-time to cope with changes in an uncertain environment and

opponent. These three capabilities enable an AI to learn from and reason about its world.

Together the competencies and capabilities describe an AI framework that enables an agent

to manage competing goals in an uncertain and dynamic environment.

The goal of AI RTS research is to develop a framework that enables an AI agent to

execute the RTS player competencies and capabilities at an expert level. An RTS agent

must satisfy two objectives:

(1) Manage competing goals/tasks across the various competencies simultaneously

(2) Cope with uncertainty

The RTS agent pyramid in Figure 2.1 presents a generic organization of a multi-scale

agent framework. The foundation of the framework includes the RTS player competencies

that are implemented with various AI algorithmic techniques. These techniques range from

complex search algorithms [52] to scripted managers. Above the player competencies are

the expert RTS player capabilities. The capabilities rely on the algorithmic techniques

utilized to implement the competencies. The implementation of the competencies and

a well structured framework to enable communication between managers entails the

capabilities, which collectively achieve handling uncertainty and managing competing

goals in an RTS environment.
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Figure 2.1: The expert RTS agent pyramid organizes from the bottom up what is necessary

for constructing a multi-scale agent capable of playing an RTS game at an expert level.

2.3.2 Integrated Agents.

Various frameworks begin by abstracting the expert competencies into managers [27]

[46] that aggregated together form an agent. The competencies may be divided into several

managers including: strategy, income, production, tactics, and finally a reconnaissance

manager. Each of these managers possess their own plans and goals that compete for

resources and execution. One specific framework developed by Weber [66] utilizes reactive

planning to orchestrate the competing needs of the various managers. The overall concept

is that reactive planning enables an AI to operate across multiple levels of managers or

competing goals simultaneously. From this a multi-scale AI is developed that reasons at

different granularities by means of the various agent managers. The multi-scale agent
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developed by Weber is implemented in A Behaviour Language (ABL) [69] which is

designed specifically for reactive planning.

A final approach toward integrated agents are cognitive architectures. Cognitive

architectures are modeled after the cognitive psychology model of human intelligence.

In other words, the way humans process information through long term and short term

memory. Two prominent architectures include ICARUS [38] and Soar [40]. The authors of

[73] develop an RTS AI agent built around Soar and open source real-time strategy game

engine (ORTS). These cognitive techniques are known as unified agent architectures. The

subsections that follow present a multitude of algorithmic techniques for implementing the

various competencies depicted in Figure 2.1. These techniques might be incorporated into

a multi-scale agent as the core of various managers.

2.3.3 Reinforcement Learning.

The fundamental concept of reinforcement learning (RL) is exactly what the name

stipulates, an agent learns over time the best actions to take in order to reach a goal state

by repeated experience in the environment it operates in or task environment [51]. Every

state an agent reaches includes a set of feasible actions available to the agent for execution.

Each action is assigned an award based on how well it moves the agent toward a goal

state. The objective of RL is to optimally reach a goal state by progressively discovering

an optimal mapping of agent-environment states to agent actions. This mapping of states

to actions is known as a policy. Given some reward function across all feasible actions,

the optimal policy maximizes the reward from an initial state to a goal state. Unlike

supervised learning [57], RL enables an agent to learn from its own experience rather than

reference a set of rules on how to behave. Challenges with RL include tuning parameters

to balance exploration versus exploitation and incorporating suitable domain knowledge

for an effective reward function. RL has been utilized in RTS games to determine the

best action an agent should take given information on an opponent [39]. It has also been
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incorporated with CBR for transfer learning agent learns to perform unforeseen tasks based

on knowledge from related previous tasks [54].

2.3.4 Scripting.

There are two variations of scripting: static and dynamic [72]. Static scripting is the

simplest form of AI in that an expert encodes knowledge to an agent as a set of rules.

Essentially every possible scenario an agent may encounter must be hard coded to the

agent - as an event occurs the agent reacts. This takes the form of a sequence of conditional

statement checks or a very simple finite state machine. The problem with this technique is

that an agent does not reason or adapt to new information in the environment - ultimately

the AI becomes predictable. Dynamic scripting overcomes the limitations of static scripting

by incorporating a mechanism similar to RL. Dynamic scripting brings in a scoring system

that enables an agent to score the effectiveness of its actions versus a player. This feature

enables an agent to reason to a limited degree on which actions to take against a player

based on historical data.

2.3.5 Case-Based Planning.

Case-based planning (CBP) is a planning technique commonly utilized in RTS games.

It has been used for action prediction [39], determining build-orders [65] and plans [48],

and extracting goals and sub-goals for agents [66]. This technique builds a library of cases

derived from expert player game traces or player log data. These player traces, which are

just a series of actions and time-stamps, are annotated utilizing an annotation tool to match

action sequences with intended goals. These goals are defined by an expert in the RTS

domain. Once a player trace has been annotated it is encoded into a set of cases that relate

actions to goals. With a well developed case library an agent can determine the set of

actions it should take to reach a goal state via a case selection function. Each case encodes

a partial player plan utilized to achieve some goal state or execute a known strategy. This

library of cases can be searched by an agent to determine the best actions to take to reach a
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goal from the agents current state, or to predict the next move of an opponent player given a

player model. As the agent searches the library, cases are scored heuristically on how well

they lead the agent from its current state to the goal state. The case with the best heuristic

value is selected.

Case-based planning provides an agent with a learning mechanism, enabling the agent

to learn from experts. The authors of [45] present a case-based planning architecture

designed to integrate real-time planning and execution for large decision spaces. Their

architecture attempts to capture the expert capability adaptation by utilizing two modules

in plan execution. One module referred to as the real-time plan expansion and execution

(RTEE) module, keeps track of execution of current active goals in a tree structure. When

RTEE comes across an open goal in the tree it queries the behavior generation module (BG)

which returns a generated plan to reach the goal. This plan is derived from the current

state of the agent and the expert case library. It is important to point out that the authors

included in their case definitions the actual game state information for when the expert took

the action. Game state information often relates to resource levels. Before RTEE executes

the plan obtained from BG it sends the plan back to BG for adaptation. This last step is

designed to take into account any new game state information that may have changed prior

to RTEE beginning execution of a goal - keeps plans from becoming stale or obsolete. The

authors implemented the system utilizing a reactive planning language similar to ABL.

Challenging aspects of CBP include generating game traces of expert players and then

annotating these traces to formalize them as cases to be added to the expert case library. In

general trace annotation requires defining a set of goals for the RTS domain the case library

supports. Another challenge is determining the temporal relationship between goals in a

single game trace. In [45] they contend that the RTS domain only requires a goal ordering

based on sequential and parallel timing. Sequential meaning a goal ’A’ must occur before
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a goal ’B’. The author of [8] presents a temporal reasoning framework for establishing

temporal ordering.

Lastly a case retrieval method or case selection function must be specified for the

case base library. In [45] they use a nearest neighbor algorithm with a similarity metric that

takes into account the similarity between the goal and game state. The case retrieval method

greatly influences the quality of the case base reasoning mechanism as demonstrated in [65]

and [70].

2.3.6 Monte Carlo Planning.

Monte Carlo planning takes as input an initial state and a goal state. It then iterates

via simulation through a set of feasible actions defined for a state and scores state-action

pairs with an evaluation function. Once the goal state is reached, the sequence of state-

action pairs with the best score is returned as the plan of execution for an agent to reach the

desired goal state. The quality of the solutions returned depends on an accurate state space

abstraction and a proper evaluation function for action-state pairs. These items require

expert knowledge of the domain being simulated in addition to an effective simulator;

however, in the case of RTS games, the game itself may be utilized as the simulator. Monte

Carlo techniques have been used for tactical assault planning [10] and strategy selection

[21].

2.3.7 Air Force Institute of Technology AI Framework.

The framework currently being developed at the Air Force Institute of Technology

(AFIT) attempts to capture expert competencies via several managers: strategy, tactics,

build, economy, and defense. These managers are aggregated under one entity - the

agent. The framework is implemented utilizing the programming language Python and

interfaces with the Spring game engine. Spring is an open source 3D RTS game engine

that provides several fully functioning RTS games. The game our agent is written for is

Balanced Annihilation, which is a free modified implementation of the commercial Total
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Annihilation game. Spring affords designers the ability to obtain all state information on

players as well as the ability to fully design and implement custom RTS games. This is an

important feature for experimentation and validation purposes.

Figure 2.2: AFIT multi-scale agent architecture.

2.4 RTS Player Modeling Approaches

A player model is an abstraction of an actual player defined in terms of actions/events

in a game. Once known, a player model allows for game designers to dynamically modify

a game state according to what the player model infers such a player may enjoy. To

achieve the research goal identified in chapter one, the RTS player model must define

two components: a player strategy and player skill level. This section briefly discusses

several approaches for player modeling through strategy prediction. These classification

techniques define one-dimensional player models that relate to predefined game strategies

for the specific games analyzed in the papers. The section ends with a discussion on

determining player skill level.

Determining the strategy and tactics a player is executing versus an AI opponent

is a great place to start for measuring the players understanding of simple strategic and

tactical decisions. Such areas of examination include the players ability to engage an AI
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opponent. For example, enemy tanks pitted against player infantry is a bad tactical decision.

This poor decision could be the result of poor scouting, poor technology advancement,

not understanding utility of units, poor strategic planning, or just poor maneuvering on

the battlefield. Possible features for observing these types of player behaviors include

the number of AI vs Player engagements, players use of scouts, battle wins and loses,

player resources, player technology and upgrade advancements vs AI advancement, and

the list goes on and on. The key point is that data must be collected on the player for

evaluation. Collecting and analyzing such data is non-trivial. However, some insight into

this is provided in the subsections that follow.

2.4.1 Hierarchical Player Modeling.

Hierarchical methods attempt to reduce the amount of computations for building

a player model by separating classification into abstracted levels with the top tier

classification layer being more general and the sub-layers more granular. The advantages of

this approach are that different aspects of player data can be analyzed at the various levels

allowing for unique classification techniques at each level. For example, in [53], the authors

introduce a two tier hierarchical approach for classifying the player. The first tier utilizes a

fuzzy classifier to distinguish a player from two play styles: aggressive or defensive. The

classifier uses a single value to determine the player as either aggressive or defensive. The

value quantitatively represents the amount of game-time the player spends attacking their

opponent. The assumption here, is that the knowledge gained from this first tier, reduces the

data to be examined at the subsequent classification tiers. Essentially, strategies available

to an aggressive player will be different from those available to a defensive player. The

final tier introduced uses the largest amount of information to determine the player strategy

from the player style. Once a player is classified as aggressive, specific game events are

listened for to aid in the final classification of the players strategy. The same goes for

defensive play style. This final tier uses a technique that resembles reinforcement learning
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in that a uniform reward is associated with each action taken by the player, probabilities are

assigned to observations for likelihood of the observation relating to a predefined strategy,

and a discount factor is included for emphasis on present actions in a finite horizon. The

sum-product is calculated using these three parameters to obtain a confidence value for

each strategy, essentially a maximum expected likelihood or confidence. The strategy with

the highest confidence is selected as the most likely strategy being implemented by the

player.

2.4.2 Machine Learning: A Supervised Approach.

The machine learning approach examined is the one introduced by Weber [67]. The

premise of the paper is data mining or rather encoding player information from player logs

into feature vectors, and then using supervised learning algorithms to classify these vectors

with respect to predefined strategies or assigned labels. The importance of these vectors

must be stated clearly. The vectors encode information on the players position in their

technology tree or tech tree. In RTS games a tech tree is a decision tree that presents

the player with technology advancements. These advancements include buildings that

allow for production of units and weaponry, economic enhancements, advanced technology

development or unit/building upgrades. How quickly a player progresses through this

technology tree depends on their available resources that they have collected. Without

these resources a player could be stuck at a low tech level while their opponent advances,

putting the player in a vulnerable and weak position. Observing the decisions a player

makes through this technology tree and the timing of these decisions provides information

on the player’s strategy. For example, it is reasonable to argue that a player who consistently

chooses aircraft advancement over ground unit upgrades might be implementing a strategy

that requires strong air assets. The authors collected several thousand player logs and built

feature vectors from them. Each vector is then labeled as a predefined strategy using a set of

rules defined by the authors. Any vectors that cannot be determined are labeled unknown.
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Now knowing the strategies of the players, the authors utilized learning algorithms from

the WEKA package [6] to attempt to classify the player vectors from various time intervals

within the game. The learning algorithms attempt to classify the player from the feature

vector as it is recreated over time simulating real-time, in-game classification of a player

to build a player model.

2.4.3 Bayesian Model: An Unsupervised Approach.

The paper produced by Synneave and Bessi [58], takes an unsupervised approach to

player modeling. Rather than attempting to classify a players strategy the algorithm defines

a probability distribution across all possible tech tree decision paths a player could follow.

These probabilities are calculated using observed events of build tree decisions, such as

existence of a building and/or unit type, and timings of the appearances of these events.

The possible build tree options were limited to observed replay logs from expert players,

the same data set used in the supervised method previously discussed [67]. The advantage

of this method is its ability to determine a player’s strategy based on a confidence level. This

means the system handles changes dynamically, being able to adjust to a player’s strategy as

it changes throughout the game. Whereas the supervised method determines strategies from

a small pool of strategies defined by the authors, the Bayes approach assigns distributions

across a large pool of possible technology tree decision paths. The authors propose that

this method could be used to infer what decision the AI should make given the decisions of

the opponent, but further research is required.

2.4.4 Measuring Skill Level.

Extracting player skill level in RTS games is non-trivial. Similar to the supervised

approach approach presented in [67], features about the player’s actions within the game

must be obtained. The question then arises, what information might be useful to collect

on the player to approximate their skill level. Avontuur [9] provides great insight into

possible features for classifying a player’s aptitude. One example provided by Avontuur
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is actions per minute (APM), which relates a player’s skill level to in-game mouse-clicks.

Features like APM are classified by Avonturr as visuospatial attention and motor skills. The

author further contends that experts perform better in this category of features; however,

measuring better or rather the effectiveness of these actions is crucial. For example, a

player issuing commands quickly, yet erroneously, will obtain a high APM. Determining

the player’s true APM requires a method for filtering irrelevant commands or mouse clicks.

The author uses an optimized support vector machine (SVM) known as sequential

minimize optimization algorithm (SMO) to classify player skill level based on 44 features

derived from player log data. A SVM is used for classifying nonlinear data sets. It uses

a linear function (kernel) to transform the data into a linear feature space so that the data

is linearly separable. Once a line is found that separates the data, support vectors for

each class are used to maximize the separation between the line and the respective classes

it separates. SMO is an optimized technique for using standard SVMs. It breaks the

classification problem into a series of smaller sub-problems that are solved more quickly.

For detailed information on SMO refer to [47]. The author groups the features utilized

for classification into several categories including: visuospatial attention and motor skills,

economy, technology, and strategy. The visuospatial attention and motor skills encapsulate

the idea that an expert player has better motor skills and is able to observe more of what

is occurring within the game, thereby making faster decisions. This idea is captured by

filtering the APM. Filtering is used to ensure the effectiveness of the players actions to

guarantee a high APM is a sign of skill and experience. The next category is economy

which measures the effectiveness of the player to gain resources needed to advance in

the tech tree as well as support defensive and offensive operations. The technology

category is focused on capturing the total number of upgrades the player commits, research

advancements the player engages, and their position within the tech tree. The final category

is strategy which encompasses the types of units and buildings the player creates as well
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as supplies used and gained. By performing some pre-processing on these features, the

author trains their classification algorithm to determine the skill level of the player. The

complexities of observing player skill level, as introduced by Avontuur [9], may be reduced

by observing strategy timing. Essentially, a strategy dictates the actions a player will take.

The speed of a strategies execution depends upon the ability of the player to perform

resource gathering, defense, and base creation simultaneously. Therefore, a strategy

schema as defined in [67] and its timing encapsulates the categories of features discussed

by Avontuur. For RTS games, utilization of a strategy is necessary. A player cannot engage

in the game without choosing a strategy of sorts. It is a shared idea in the RTS research

community that the build tree of a player reveals their strategy [67]. A build tree is the parts

of the technology tree the player has reached or executed. This is an assumption accepted in

our work as well. Since a strategy captures the critical actions of a player, it is conjectured

that the timing of the execution of a player’s strategy is enough to rate the player’s skill at a

high level, meaning an expert, intermediate, or novice. Therefore, determining the second

component of the player model, skill level, relies heavily on knowing the key features of

the strategy the player is executing or a strategy schema. This eliminates the need for APM

and filtering for skill level classification.

2.4.5 Summary.

The previous sections discussed building a player model around the strategy and

skill level of a player. The benefit of such a model is that it enables an opponent AI to

better rationalize within its task environment on how to engage the player. Knowing the

player’s strategy enables an AI to determine the best method of play against the player.

However, in developing war game simulations or dynamic game play experiences, it is not

enough to know the player’s strategy. Knowing the players skill level reveals strengths and

weaknesses in regards to the player’s ability to think and operate both strategically and
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tactically within a dynamically changing environment. For education this enables an AI to

react appropriately with the player for the purposes of education and instruction.

2.5 Planning in RTS Games

There exist two areas of planning in the RTS domain: strategic planning and tactical

planning [72]. Tactical planning aims to answer the question of how to engage the

enemy. This requires an agent to have awareness of the map terrain (choke points), enemy

controlled map locations, enemy unit strengths and weaknesses, and other pertinent tactical

information. This area typically focuses on micromanagement of combat units to form

large attack groups to engage enemy forces, and selecting the correct combat units to

engage enemy forces based on the strengths and weaknesses of each unit [10].

Strategic planning encompasses a much larger area of operations than tactical

planning. It is focused on implementing a strategy selected by a player. In general

this requires macro-management or determining what and when to build, produce, and

upgrade. However, there are others that present strategy execution with respect to battlefield

management [52], we place this under tactical planning. In most RTS games a strategy

directs the player through the RTS technology tree throughout the duration of a single

game session. At a minimum, the operations falling under strategic planning include

resource gathering, unit production, building construction, technology upgrades, and base

expansion. Implementation of a strategy takes the form of a build-order. A build-order

is an ordered set of actions or a plan to achieve a goal. For example, if a player seeks

to obtain five combat units this involves a series of sequential and/or concurrent actions

such as commanding workers to gather resources, constructing a barracks to build combat

units, and then queuing the barracks to generate five units. Strategic planning attempts

to generate build-orders to achieve goals. This thesis investigation attempts to address the

issue of developing a strategic planner capable of producing build-orders that are as good as

or better than expert build-orders. A more formal definition of the build-order optimization
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problem is presented in the sections that follow. It is interesting to note that a strategic

planning tool in an RTS game is essentially optimizing the size of the agents OODA loop

or speed at which an agent executes decisions. In the military it is taught to minimize the

OODA loop or the time required to observe, orient, decide and act. In an RTS game this is

the build-order problem.

2.5.1 Behavioral versus Optimization Approaches.

It is important to address the two views of the build-order problem in strategic

planning. The build-order problem is also the build-order generation problem. It is either

represented as a behavioral problem or an optimization problem. We contend that the

framing of the build-order problem greatly impacts the effectiveness of strategic planning

tools. Ultimately the objective of any RTS agent planning approach must be to provide

expert level build-orders online.

The behavioral approach tends to be more focused on producing build-orders that are

directly derived or learned from expert RTS player build-orders. In general, this approach

is implemented via case-base reasoning [65] [45]. The underlying assumption is that

CBR will provide an agent with build-orders that resemble expert play. The advantages

to this approach are that an agent is given the ability to learn good build-orders that will

inevitably aid the agent in reaching a strategic goal. In addition the approach allows for

online planning and execution. The disadvantage to a strategic planner limited to CBR is

that it relies on cases derived from a finite set of expert data. This presents an implicit

assumption that the experts are indeed generating near-optimal build-orders with respect to

executing a strategy. However, there is no method or metric to validate this assumption.

The optimization approach looks at the build-order problem very differently. Build-

order is a performance issue not a behavioral issue. The objective is to now equip an

agent with a planning tool capable of performing at or better than an expert player - not

mimicking behaviors. Objective functions are introduced to produce a planning technique
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that searches for build-orders that optimize these functions. Via these objective functions

a build-order produced by a planning tool is validated as equal to or better than an expert

build-order. In addition, expert build-orders are utilized as a starting point for the search

not an end point. Some concerns with this approach are related to computational time

and its ability to produce online planning tools. We address build-order generation as an

optimization problem and demonstrate an online capability.

Figure 2.3: Build-order Approaches and associated algorithmic techniques. The dotted

ovals represent additional components that are commonly associated with a particular

approach, however, they are not inclusive or exhaustive.

2.5.2 Build-Order Optimization Techniques.

For this investigation we frame the RTS build-order optimization (BOO) problem as

a planning and scheduling problem. Build-order optimization consists of determining the

actions necessary to reach a desired goal state and then organizing the execution of these

actions to minimize the makespan of plan execution. Build-order optimization seeks to find
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an ordered set of actions to accomplish a given goal while minimizing the time to reach the

goal. The build-order optimization problem takes as input a set of feasible or infeasible

actions A, a goal state G, and an initial or current game state S . Each action ai within A

has resource preconditions the current game state S must satisfy before the state issues the

action - which generates the child or next game state. Each action produces effects that

are applied to the game state in which the action is completed or its duration expires. The

current game state is defined by the values of current resource levels and the current game

time in seconds. In terms of output, it is an ordered sequence of actions whose cumulative

effects are captured in a final state S f that is equivalent or satisfies the G requirements.

Several techniques have been developed to provide approximate solutions to build-

order optimization. One particular formulation of the BOO problem is discussed in [20].

The authors of [20] present an online planning tool for optimizing resource production in

RTS games. In particular they utilize the game Wargus [60]. Their planning tool attempts

to solve both the planning and scheduling components of the BOO problem specifically

aimed at resource production. The planner consists of two components: a sequential

planner which uses means-ends analysis (MEA) to find a plan from an initial game state to

a goal state with the minimum number of actions, and a heuristic scheduler which reorders

actions in a sequential plan (output of the sequential planner) to allow concurrency and

minimize the plan’s makespan. MEA recursively solves sub-goals from an initial state until

finally reaching the goal state. Sub-goals are derived from the goal state and sub-plans are

formulated to solve each sub-goal, combining plans as they overlap.

The issue with the build-order problem model used in [20] is that it relies on the

assumption that the best plan is the one that creates the minimum amount of actions

and renewable resources in order to optimize makespan. However, focusing on a single

objective does not capture a realistic model of an RTS game - RTS games are inherently

multi-objective. With respect to generating the minimum amount of actions it is shown
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by example that this is a poor assumption if concurrency of actions is not properly

considered. For example, if a planner ’A’ generates five actions that are not concurrent

versus another planner ’B’ that generates ten actions with pairs of actions being concurrent,

then according to the underlying assumption of the model, ’A’ is better than ’B’; however,

with concurrency if the completion time of ’B’s plan is the same as ’A’s plan, then ’B’

is superior with respect to effects or resource production. However, this is not explicitly

formulated or stipulated as an objective of the model developed in [20]. The model has no

means of determining whether ’A’ or ’B’ is optimal with respect to time and production

of resources. As shown by example, the number of actions in a plan given duration is not

an optimal feature of a build-order plan. Rather the timing and effects of the plan taken

together determine optimality.

The second requirement for optimality presented in [20] is that the minimum amount

of renewable resources is generated; however, in an RTS game this is not always desirable.

The long term effect of producing the minimal amount of required resources to reach a

goal will suffocate the player’s economy in the long term. For example, the question arises

of which is better, producing five workers to mine minerals to reach a goal or producing

ten workers to mine minerals to reach a goal? With respect to action duration to minimize

makespan producing five workers is optimal; however, this is a single optimal feature of

an RTS plan, the effects of the actions must also be considered. Makespan is important

but there is an underlying tradeoff surface between makespan and action effects. The

authors of [20] adapted their approach in [19] which improves their heuristic scheduler

by incorporating a bounded best-first search technique to better address the tradeoff surface

of makespan and action effects.

Churchill and Buro in [22] utilize a depth-first search (DFS) branch and bound

algorithm to perform build-order search. As input they take in a state S . DFS then performs

a recursive search on descendants of S to find a state that satisfies a given goal G with the
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edges in the graph representing actions. DFS uses a linear amount of memory dm where d

is the depth the algorithm explored and m is the size of a node. For online learning, DFS

affords the ability to end the search at any time and return the best found solution so far.

The authors successfully integrate their online optimization planning technique into their

Starcraft: Broodwars agent as presented in [23].

To reduce the complexity of the search space Chruchill and Buro [22] introduce several

abstractions into their simulator. A few of these abstractions include:

1. To increase the speed of state transitions the authors assign a constant value for

resource gathering rates derived empirically from professional game observations.

It also eliminates gather resource actions which enlarge the complexity of the build-

order search space for branching search algorithms like DFS.

2. To remove worker reassignments and further reduce the search space, the authors

assign a preset number of workers to newly constructed resource collection sites like

gas refineries in Starcraft.

3. The authors also inflate construction action durations in order to compenstate for

travel times to build locations.

The following list outlines the manner in which the authors define and reduce the

complexity of the search space examined by DFS:

1. First the authors determine the legality of actions for a given state. These rules are

be found in [22].

2. To eliminate null states (states in which the player takes no action and is waiting for

previous actions in other states to complete) from the search space they introduce the

concept of fast-forwarding simulation. This concept is captured by A state transition

function. Fast-forward simulation is important in order to reduce the computation

time required to search the partial solution space for a good solution in real-time.
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3. The authors introduce two heuristics for pruning nodes based on the heuristic eval-

uation of the path length left to the goal. They call these the ”LandmarkLower-

Bound(S,G)” and ”ResourceGoalBound(S,G)” heuristics where S and G are the cur-

rent state and goal state respectively.

4. They also utilize breadth limiting to limit the branching factor of the search. This

bounding issue is also addressed in [19].

5. The authors introduce the use of macroactions to further reduce the search space.

When a macroaction is executed it is equivalent to executing a single action multiple

times.

Another build-order technique is presented in [14] which uses MEAPOP to produce a

partial-order plan (POP) of actions to achieve a desired resource goal. They then use S LA∗

to schedule the actions. This algorithm is based on the A* search technique and learning

for real-time purposes. They formulate the problem domain around resource production

goals. MEAPOP generates a partial-order plan. POPs reduce the search space of traditional

planners because they don’t attempt to assign order to the actions taken in the plan. The

plan produced is only required to satisfy constraints between the actions (dependencies) -

order of execution is not considered. Therefore the search space contains plans that are not

permutations of the same actions.

Any single objective metaheuristic (s-metaheuristic) [59], like DFS or BFS, requires

action bounding to limit branching during search, especially global search techniques

like breadth-first search and depth-first search. For example, in the game of Wargus a

peasant requires an available town center to be constructed. To prevent the planner from

constructing a town center for each new peasant the authors of [19] bound the number of

command centers to build. This requires more expert knowledge to be inserted into the

planning tool parameter tuning. This problem is also identified in [22]. In addition, single
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objective functions fail to capture the tradeoffs made throughout play of an RTS game. An

algorithm that capable of handling multiple objective functions must be utilized in order to

capture the inherit tradeoff surface of RTS games. A better search technique is an MOEA

that generates a surface that includes any number of objectives providing a decision maker

or agent with options for deciding what is best for a given state of the game session. In

addition, DFS and BFS do not keep track of good building blocks or action sequences.

Both DFS and BFS generate partial solutions as they search for a goal state. This means

each plan is uniquely constructed which is a waste of computational time. In MOEAs,

the search space consist of complete solutions (feasible and/or infeasible) and the highest

scoring plans are reused to build new plans which speeds convergence of the search.

2.5.3 Stochastic Plan Optimization with Case Based Reasoning.

The approach presented in [48] applies stochastic search to optimize the planning of

CBR agents. The technique presented by the authors is divided into two stages both of

which are similar to the selection and reproduction search components of an evolutionary

algorithm. The first stage is plan generation which consists of two phases. In the first phase

of plan generation, a population of base plans are derived from combinations of expert

plan data and randomly generated plans. A trust value is assigned to generated plans which

scales higher for plans with more expert derived components and lower for plans with more

randomly generated plans. This trust value is utilized for exploration and exploitation when

optimizing the generated base plans - diversity. The second phase attempts to iteratively

optimize the population of base plans using various plan generation operators. This second

phase is similar to evolutionary algorithms which use operators like crossover and mutation

for reproduction. Similar to mutation and crossover, these operators are utilized to balance

exploration and exploitation of the search space via probability parameters on the operators.

The second stage of the planner is an evaluation stage. It utilizes a heuristic to score

plans similar to a fitness function as used in evolutionary algorithms. Plans with a high
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score are selected and utilized for the next iteration of population generation. The heuristic

function is an aggregated sum of multiple objectives. Aggregated into the heuristic are

the following components: territory control; current supply of resources; military unit’s

resource costs are scaled by the current health of each respective unit (damage from enemy)

and a constant scalar indicating worth of military units; the same is done for civilian units

without the constant scaling factor; finally technology also without the constant scaling

factor. The final score of a plan is the sum of the player’s score minus an enemy’s score.

The heuristic is designed like a zero-sum or min-max heuristic in that the plan that ensures

the maximum tradeoff of the players score at the expense of the enemy’s score is favored.

Experimentation with this planning tool was mainly at the tactical level. However,

it would be possible to utilize this technique for build-order optimization. Once again,

this planner is a single objective optimizer; therefore, it does not capture the tradeoff

surface present in RTS games. In addition, this technique is essentially a single objective

evolutionary algorithm whose building blocks are plans, and whose initial population is

constructed from experts.

2.5.4 Optimizing Opening Strategies.

Gmeiner, Donnert and Kostler the authors of [34] and [33] developed a multi-objective

approach to compare already computed near-optimal build-orders discovered by a Starcraft

2 optimization tool known as EvoChamber developed by a third party. The authors of

[34] provide a means for evaluating near-optimal build-orders in terms of economic and

military power. However, the authors note the need for a pure multi-objective approach

for determining near-optimal build-orders to obtain the approximated Pareto optimal or

non-dominated solutions in a single run. This is interesting because our work provides a

multi-objective approach that the authors of [34] can now use to determine the effectiveness

of our planning tool.
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2.5.5 Coevolution for Strategic Planning.

As presented in [11], Ballinger utilizes a coevolution system for discovering winning

strategies against static opponents. Their current implementation utilizes a teachset defined

by eight opponent strategies. These strategies are build-order plans that consist of a

sequence of only feasible actions. Plans contain at most 13 actions and are encoded by

three bits each. Their chromosome representation is a binary string of 13 actions or 39 bits.

Plans consist of a limited number of build actions for the creation of units and buildings

and a single attack action. They utilized a scripted tactical planner in which once an attack

group is generated they are issued to attack the opponents home base and any enemy units

along the way.

Ballinger attempts to optimize a single aggregated objective function provided below.

The objective function attempts to optimize the ability of a strategy to achieve three goals.

The first is to spend as many resources as possible under the assumption that the more

resources being spent means the stronger the units and structures being produced (recall

that this is very different from the assumption made by [20]). The second is to optimize the

number of enemy units destroyed, and finally to optimize the number of enemy buildings

destroyed.

Fi j = S Ri + 2
∑

kεUD j

UCk + 3
∑

kεBD j

BCk (2.1)

The value of Fi j is the fitness of player i against opponent j. The first goal is observed

by S Ri which is the total amount of resources spent by player i. The second goal is captured

by summing the unit cost of destroyed opponent units represented by UD j where UCk is

the cost to build unit k. The final goal is realized by summing the building cost of destroyed

opponent buildings represented by BD j where BCk is the cost of building k.

The search components of the coevolution algorithm consist of a roulette wheel for

selection, single point crossover, and bit-flip mutation. They also included a fitness sharing

mechanism designed to ensure diversity in the population of solutions.
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The limitations of this design is that to perform evaluation of solutions requires playing

through an entire game session against all opponents defined in the teachset. In addition,

the opponents are well defined - no uncertainty the coevolution system has complete

information of the enemy strategy. This system does not satisfy the expert capability of

being adaptive nor can it be used as a real-time planning tool. This makes their technique

an offline learning tool.

It is interesting to note that Ballinger uses case-base injection for a establishing a

teachset. The author takes a complete strategy or build-order plans of a human player and

uses these to train the coevolution algorithm offline. The plans are not directly injected into

the population of the coevolution algorithm. Another limitation to this technique is that it

only looks at very small build-orders - currently limited to 13 actions. This is a very small

search space for experimentation considering the actual size of an RTS search space.

2.5.6 Case-Injected Genetic Algorithms for RTS Strategies.

A case-injected genetic algorithm (GA) for optimizing attack strategies is presented

in [42]. The author developed a custom RTS game called Strike Ops. The paper presents

a genetic algorithm player (GAP) designed to optimize a plan of action or strategy and

execute it in real-time. GAP is presented as an adaptive and online planning tool.

There is a subtle difference in the meaning of strategy for Strike Ops compared to the

various RTS games presented discussed so far. Essentially Strike Ops consists of two teams

Red and Blue. Blue plays the game by sending aircraft to attack Red’s ground assets which

are buildings, and static defensive and offensive weapon systems. Both Red and Blue seek

to do the most damage to the opposing side while minimizing damage to themselves. GAP

plays as the Blue attack force and therefore models the problem of determining an attack

strategy as an optimization resource-allocation problem. The model consists of two parts:

first, which assets to use on which targets and second, how to route platforms to carry out

the allocation determined in the first component. The author presents this as a trade-off
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surface that describes a good allocation versus a good route where a good allocation might

optimize the damage to the enemy but require a more risky route and therefore also increase

damage to Blue’s own units. The optimized objective function is:

f it(plan) = Damage(Red) − Damage(Blue) − d ∗ c (2.2)

where d is the total distance traveled by Blue’s aircraft and c is some constant to scale the

penalty as a result of d. The fitness function favors shorter routes, more damage to Red and

less damage to Blue. This function is very similar to a zero-sum game function [50] with

an added penalty.

The author goes on to demonstrate that by injecting expert human strategies into GAPs

population, the algorithm finds better strategies. These expert strategies are injected via

case-injection which resembles case-base reasoning. Expert actions are recorded and then

transformed into chromosomes for injection into GAPs population. This added mechanism

speeds up computational time to adapt plans to the enemy opponent in real-time and also

increases the ability of GAP to play like a human. It is interesting to note that GAP has

a tendency to over optimize solutions with respect to the fitness function leading it to lose

valuable human strategy information. The over optimized strategies tend to perform worse

than the human strategy. To resolve this issue the author utilized fitness inflation to increase

the fitness of solutions that contain human strategies. This bias’ the search so that GAP

keeps knowledge gained from human players.

2.6 Multi-objective Optimization Problems

Popular pedagogical optimization problems include the Knapsack problem, graph

coloring, and maximum clique. In general, these problems have a single objective function

to maximize/minimize with some constraints. In the case of the Knapsack problem the

objective is to maximize the total value of items contained in a knapsack with the constraint

that the weight of the objects contained in the knapsack do not exceed the weight capacity
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of the knapsack. This problem is easily modeled utilizing linear programming techniques

as presented below [59]:

Given a knapsack of capacity B and a set of items I with weights and values of wi and

vi,

max
|S |∑
i∈S

vi (2.3)

with constraint,
|S |∑
i∈S

wt
i ≤ B (2.4)

where S ⊆ I or the items contained in the knapsack.

The knapsack problem becomes a multi-objective optimization problem by introduc-

ing additional objective functions. A popular multi-objective version of the knapsack prob-

lem is introducing a second knapsack with a unique capacity. Unlike single objective prob-

lems, MOPs no longer have a single solution but multiple solutions that describe a tradeoff

surface defined by the objective functions. These solutions are defined as Pareto optimal so-

lutions. A solution is Pareto optimal if no improvements can be made on a single objective

of the solution without degrading the other objectives. A formal mathematical definition of

MOP is presented below [59]:

max/min F(x) = ( f1(x), f2(x), ..., fn(x)) (2.5)

given any number of equality or inequality constraints, and where n ≥ 2 and x represents a

vector of decision variables. A popular algorithmic domain for solving MOPs is MOEA.

2.6.1 Multi-objective Evolutionary Algorithms.

Evolutionary algorithms (EA) are a population-based metaheuristic (P-metaheuristic)

[59], which unlike local search algorithms such as depth-first search, start with a population

of solutions to search. The search components of an EA include selection, reproduction

and replacement. The selection component is used to determine which individuals of a

population to select for reproduction and sets the selection pressure of an EA. Reproduction
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is used to generate children. Common operators for reproduction include mutation and

crossover. The final component of EA’s is replacement. This component determines which

members of the original population (parents) and newly generated children will be kept for

the next iteration of selection and reproduction.

MOEAs utilize the same search techniques as single objective EAs. The major

difference is that MOEAs return multiple solutions across the objective functions being

optimized. The advantages of MOEAs are their ability to discover more than one member

of the Pareto optimal set (P∗) per iteration. In addition, depending upon the diversity

of an MOEA’s population, an MOEA is less susceptible to the continuity of the Pareto

Front. Finally, MOEAs are capable of addressing both search and multi-objective decision

making.

Some disadvantages to MOEAs is that ensuring the effectiveness of the solver requires

effective modeling of the MOP to be solved. Representing individuals or solutions of

the MOP improperly will greatly deteriorate the ability of the algorithm to converge. In

addition, much thought must be given to each search component to ensure diversity and the

right amount of selection pressure. Poor diversity is often times a result of high selection

pressure - elitism often results in premature convergence to a local optimum rather than a

global optimum.

In [29] the authors present that the size and shape of the Pareto optimal front depends

on the number and interactions of the objective functions. Deb introduces the terms

’conflicting’ and ’cooperating’ when describing objective function interactions. Conflicting

functions have extreme differences in optimum solutions and function values; whereas,

cooperating functions have similar optimum solutions and function values. Often times

conflicting functions contribute to the discovery of large Pareto optimal fronts. With respect

to MO-BOO the objective functions are cooperating.
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With respect to the number of decision variables present in an MOP, it is reasonable

to assert that the difficulty of the MOP will increase. Generally speaking, constraint-

satisfaction problems become more cumbersome and expensive to solve (in terms of

time) as the number of decision variables increases. This is due to constraint handling

Increasing the number of decision variables, introduces new constraints, both between

decision variables and on the decision variables themselves. As more constraints are

introduced, the solution space becomes smaller and possibly discontinuous. As identified

by Deb [29] constraints may hinder an MOEAs ability to converge and maintain diversity.

As presented in [24], there are three tasks that MOEAs must do well: move toward

the true Pareto-front, maintain diversity on the Pareto-front, and preserve good solutions.

The characteristics of objective functions strongly affects how well an MOEA performs

these three tasks. Ultimately the difficulty of an MOP depends upon the characteristics of

the objective functions and the interactions between those functions. Selecting the correct

MOEA to solve an MOP is non-trivial. The No Free Lunch theorem (NFL) [74] reminds

designers that there is no one algorithm to solve all problems. The problem domain must

be carefully evaluated.

2.7 Summary

This chapter has introduced the five competencies of an RTS player and the three

capabilities of an expert player. It has also provided discussion on a multitude of

algorithmic techniques, developed by the AI research community, for encompassing the

competencies and capabilities in the managers of a multi-scale agent architecture.

Furthermore the chapter establishes the significance of player analysis applied to

RTS games in order to generate player models providing agents with information on their

opponent. The player models consist of two pieces: player strategy and player skill level.

This model can then be utilized by an agent to enhance its goal formulations and planning

processes.
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Planning in the RTS domain consist of strategic planning and tactical planning. The

focus of this work is on strategic planning. Chapter two points out the importance

of properly framing the build-order problem and presents two perspectives on how to

frame the build-order problem. The first perspective, behavioral, frames the build-order

problem as a behavioral issue, whereas, the optimization perspective views build-orders as

a performance issue.
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III. Methodology

3.1 Introduction

The goal of this thesis investigation is to develop an AI agent with the ability to

perform at an expert level for critical decision-making education. This goal is apart of a

vision encompassing dynamic content injection, adjustable difficulty settings, and tailored

feedback in real-time to enhance decision-making education. The development of this

capability relies on the three objectives outlined in chapter one - Objective 1a, 2a and

2g. This chapter presents how those objectives are achieved. The first section discusses

our methodology for building an RTS player model - encompassing skill level. Section

two presents our approach to strategic planning for RTS game agents, and the final section

covers the integration of our agent into the AFIT framework presented in chapter two. The

agent framework with the Spring engine, enables the possibility of an AI entity to take the

information provided by the player model and utilize it with our strategic planning tool to

dynamically interact with the player.

3.2 Building the Player Model

The RTS player model is an important abstraction or approximation of how the player

is perceived in the game. The first component of the RTS player model is strategy. The

second component of the player model is skill level. The focus of this effort is to determine

skill level from a known player strategy.

3.2.1 RTS Player Skill Level.

The first research objective involves acquiring a large dataset of skilled and unskilled

player data from a known RTS game domain. Due to the great availability of player data

for the Starcraft: Broodwars game, we selected Starcraft: Broodwars for developing our

skill level technique. In particular, Weber provides expert player log data via [64]. The data
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captures game logs for the nine permutations of race matches in the Starcraft: Broodwars

game. The data consists of player vector that capture a player’s strategy for a single game

session. Each vector is labeled with a corresponding strategy number that is determined by

a rule set defined by Weber. Weber identifies six strategies for each race. For more details

on the data set reference [67].

In Avontuur’s investigation on RTS player skill level [9] the author presents a design

and results for a player skill level classification technique utilized for the Starcraft RTS

game. The disadvantage to this method is that it requires large amounts of player data that

are not necessarily available during a single game session. In addition, the technique is

very specific to the Starcraft games. Due to the limitations of this classifier, and the limited

amount of research in the community on skill level classification in RTS games, our work

presents a new perspective on addressing this problem.

There is one critical assumption for our technique to work. First off, the initial expert

data must capture a wide spectrum of expert strategies, but not necessarily all. As presented

by [9] experts exemplify motor and visuospatial skills that exceed those of other skill levels.

As such, the decision process of experts is faster. A conjecture can be formulated that states

by knowing a player’s strategy and the timing of the actions to execute this strategy, a

player’s skill level with respect to strategy execution can be determined relative to experts

executing the same strategy. Fortunately, Weber’s data captures this exact information.

Now having the strategies of hundreds of experts and their timings for executing these

strategies, it becomes possible to define an expert space that captures a large variety

of expert strategies. Unlike [9] we contend that there is no need to incorporate all the

feature categories the author identifies because a player’s strategy and timing of strategy

encapsulates all of these categories. For example, knowing how much a player has collected

in resources is unnecessary for classifying a player at a high level since the strategy and

timing of actions of a player depends upon resources. This assumption simplifies the pre-
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processing and analysis. It is also important to state that there are several factors that

influence an experts decision to execute a strategy. These factors cannot be ignored when

comparing the strategy of an unknown player to a known expert player. The factors are:

opponent’s selected avatar race (which is either Protoss, Terran or Zerg for the Starcraft

series), map level terrain, and the player or agent’s own selected avatar race. These factors

are aggregated together to describe the game scenario. When evaluating an unknown player

to an expert player the game scenarios should be the same. However, if provided a range of

experts on various maps with various strategies then it is expected that the unknown player

can be evaluated against the distribution or space of experts.

Our skill level evaluation design is based upon the assumption that experts, with

respect to beginner players, are able to plan and execute strategies quickly. We attempt

to capture the speed of execution of a player strategy by calculating the average distance

between decisions (DBD). Therefore, our conjecture is that an expert will have a low DBD

average compared to that of a beginner whose average should be high relative to a given

expert DBD for the same game scenario. Figures 3.1 and 3.2 are histograms that depict the

distribution of expert players with respect to DBD.
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Figure 3.1: Distribution of DBD metric for expert players of Starcraft: Broodwars. This

data is prior to filtering for outliers.

These histograms capture three strategies out of the six strategies experts execute when

playing as Terran vs Zerg for the Starcraft game. The figures clearly capture a range for

DBD that experts predominately operate in across strategies. The DBD metric not only

allows for determining a players skill level, but also provides a metric for measuring the

performance of the strategic planning tool versus known expert players.
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Figure 3.2: Filtered for outliers, these histograms depict the distribution of the DBD metric

for expert players of Starcraft: Broodwars.

The following strategies Bio, Dropship and 2-Factory depicted in figure 3.1 were

selected because they had the most player data of the six strategies for Terran vs Zerg.

These histograms were calculated by applying the DBD linear transformation to the

original raw dataset of expert players provided by Weber. From these histograms it

became apparent that there were some significant outliers in the dataset. To remove these

outliers we filtered the dataset based on a minimum number of decisions that a player

must have made while executing a strategy during a single game session. The filter was

applied in order to remove players from the data that appeared to correspond to non-expert

players. The filter removed players who made less than twenty decisions out of the fifty
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possible decisions with respect to the strategy decision schema utilized by [67] for strategy

prediction and classification. The histograms for the filtered data are shown in figure 3.2.

3.2.2 Measuring Skill Level: Distance Between Decisions.

The linear transformation applied to the player vectors is below where E represents

the length of the original player vector or the number of features in the player vector, and

N is the number of features the player did not make. The features capture player decisions

during game play. ∑E
i=1(Di+1 − Di) + 1000 ∗ N

(E − N)
(3.1)

The problem with averaging is features with a value of zero will drive the average down,

thereby making a unskilled player appear highly skilled for being indecisive. To combat

this issue a penalty of 1000 game cycles for each zero, or non-decision, present in a player’s

vector is added. Then only divide by the total number of decisions the player actually made.

The reason for utilizing 1000 game cycles is that it empirically appears to be slightly higher

than the average window between decisions. In addition, it provides the best spread of

separating expert from non-expert data as depicted in the histograms in Figure 3.3. In

Figure 3.3 the histograms depict a set of known experts in blue with a small set of known

non-experts in red. By adding the penalty of 1000 cycles, the separation of the data is very

clear. This small example only serves to validate the utility of a penalty. By increasing the

penalty the distance between the two sets greatly increases. The penalty value is dependent

upon the RTS game being analyzed. The value utilized for Starcraft will most likely not be

acceptable for a different RTS game.
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Figure 3.3: The histogram on the left demonstrates the separation without a penalty. The

histogram on the right applies the penalty.

3.2.3 Utility of Skill Level.

In the Starcraft game, players can compete against each other over Starcraft game

servers. Skill level is utilized to ensure players combat other players that can play at

their skill level. This is to ensure a fun and challenging game experience. It should be

obvious that to engage players and keep them playing, a game must be challenging and fun,

however, more on key characteristics of player engagement can be found in [35]. These

same two characteristics are also important for engaging students in education [35][56].

With the vision of our work encompassing RTS games for decision making education, skill

level provides insight into the players experience [63].

A player model provides information to game designers and to artificial agents on

how the human player is experiencing the game. The RTS player model consists of

two components: strategy and skill level. It has been demonstrated in various works the

utility of developing expert AI that can identify and incorporate information on a human

opponent’s strategy [67]. However, with respect to education, skill level is an important

piece. Knowing a player’s skill level an agent can adapt the difficulty level of the game

experience to ensure the player is challenged but not overwhelmed. Challenge is important
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for keeping students engaged [35]. In addition, our skill level metric enables online

classification of a human player which can be used to provide feedback to the player on

how well they are making decisions toward executing their strategy. Feedback is a crucial

component to education and any game developed for education must provide students with

feedback [35]. Our skill level metric measures how well a player handles the workload

of an RTS game. Recall, that the skill level metric DBD is measuring the time between

key milestones of a known strategy schema. A strategy schema clearly defines player tasks

and goals. These actions and goals are the workload of an RTS player. Over time, the

DBD metric provides insight into how well, relative to prior knowledge of an expert DBD

distribution, a player is managing tasks within the game.

Dynamic content injection is the act of changing the game play experience as a

player is experiencing the game. Knowing the skill level or workload of a player enables

the possibility of injecting additional in-game scenarios to challenge a player’s decision

making process under stress. For example, in the Age of Empires RTS game, if a player

engages in the single-player mode of the game, they play through numerous RTS game

scenarios. In one case, the player is tasked at the beginning of the game to construct a

home base and a small unit of troops for defense. However, unexpectedly the player is

then informed of a rescue mission or resource sites that they must beat the opposing AI

agent too. The player must now switch from developing their home base and defenses to

initiating a rescue mission or reconnaissance team to the target site.

3.3 Strategic Planning Tool

The second objective of our research is to develop, implement and validate a strategic

planning tool that produces build-orders for an RTS agent that are as good as or better than

a human expert. The planning tool must produce near-optimal build-orders in real-time.

Many planning problems are of complexity P-Space complete [17], but the complexity of

the build-order problem is yet to be determined. Given that it is a planning problem and a
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scheduling problem it is at least NP-complete [18] [? ]. Therefore it is necessary to use an

approximation technique to search through the decision space of the build-order problem.

For this reason we selected an evolutionary algorithm. To achieve a real-time planner our

design utilizes an optimization approach that includes a mathematical representation of the

build-order problem with constraints, a simulator to evaluate action plans along side the

RTS game, and an MOEA able to search the solution space for good build-orders. To

provide the agent with expert goals and goal-ordering CBR is incorporated. Our approach

is similar to the CBR techniques discussed in [70] [45]. Case-based reasoning provides

an agent with goals to plan toward and expert goal-ordering relative to the agent’s current

game state.

3.3.1 Analyzing Optimization Approaches.

As presented in chapter two, there exists at least two types of optimization approaches:

single objective and multi-objective. To model the build-order problem a multi-objective

approach is taken in order to build a high fidelity model of the RTS problem domain.

It is easier to justify this selection by demonstrating the disadvantages of the alternative

approach.

The decision to approximate a problem as a single objective or multi-objective

problem depends on the complexity of the problem to be solved - generally determined

by the number of competing objectives and constraints [29]. In general, most real-world

problems can be viewed as attempting to optimize competing objectives with multiple

constraints [59]. With respect to the RTS problem domain, we contend that it is a problem

domain with multiple competing objectives and constraints that can be described by a trade-

off surface. The RTS build-order trade-off surface is defined at by time and resources.

The build-order problem pertains to strategy execution. We conjecture that the faster a

player is able to implement an appropriate strategy against an opponent, the better the

player’s performance against their opponent. In general this is the underlying RTS expert
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assumption that experts are capable of implementing strategies faster than intermediate and

beginner players [9].

Implementing a strategy is by definition reaching a list of goal states. An effective plan

will empower the player to reach goal states in the minimal amount of time required. In RTS

games these plans are build-orders. By organizing the actions within a build-order a player

can increase or decrease the time to reach a goal. Immediately it becomes apparent that

time is an objective. However, not as obvious are the requirements necessary for reaching a

goal state in a timely manner. These requirements are resources which we describe as unary

and volumetric resources. This manner of characterizing RTS game resources as unary and

volumetric resources with producer/consumer constraints is derived from the work of [71].

Therefore, new objectives are derived in terms of resource amounts and allocations. For

an experienced human player these objectives take the form of questions which are what,

how and when to utilize a resource. For a computer agent, these questions must be defined

mathematically. It is our assumption that a single-objective function cannot adequately

approximate the decision making process of an expert RTS player.

3.3.2 A Nonconstraining Decision Space.

To ensure diverse and near-optimal build-orders are found, steps must be taken to

allow for a large decision space. The assumption is that a larger decision space better

reflects the RTS planning domain that expert players operate within. To allow for this

requires the design of a robust RTS build-order simulator architecture with the ability to

simulate all possible strategic decisions a player can make in a RTS game. Our simulator

supports this design requirement. Essentially an agent utilizing our tool is not limited to a

small subset of actions, they have the option to execute any action defined in the RTS game

with respect to strategic decision making. This is unlike other evolutionary and genetic

algorithim techniques discussed in [11] [42] which limit decision making. In fact, the

action strings or accepted build-orders of our planning tool can range from very small
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(one action) to very large (200+ actions). Often times constraining the search space is an

attempt to ensure only feasible action strings are considered by the optimization algorithm

[34]. However, this as a great limitation to empowering an AI with the ability to execute

strategies at an expert level because it abstracts away too much of the decision space of

RTS games. This abstraction limits the size of the decision space and diversity of solutions

a search algorithm can discover. Therefore, by allowing our planning tool to consider

infeasible solutions this removes constraints on the decision space and improves diversity

of solutions. By incorporating a repair mechanism our planning tool is able to consider

infeasible solutions, correct them and output feasible build-orders with associated fitness

values.

3.3.3 Modeling Build-Order Optimization as Producer/Consumer Problem.

In formulating the mathematical model to approximate the build-order problem, a

goal programming approach was adopted [24]. Goal programming is defining objective

functions that minimize a distance to a goal. Distance is defined loosely as any quantitative

metric that can be utilized to measure equivalence of a feasible solution from a multi-

objective problem population to a target goal.

This paper adopts the nomenclature introduced in [20] which describes two categories

of resources: renewable and consumable. The authors of [20] further characterize these

two categories of resources in the RTS domain as one of the following four types: Require,

Borrow, Consume, or Produce.

(1) Require: a resource that is persistent throughout the execution of the action but can be

shared by other actions at the same time. For example, multiple units collecting wood and

returning it to a lumber mill as in Age of Empires. The lumber mill is a resource that can

be used by multiple units executing the collect wood action simultaneously.

(2) Borrow: A resource that is persistent throughout the execution of an action but cannot

be shared. Is limited to one action at a time. For example, a barracks can only produce one
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military unit at a time. Other requests can be queued, but it will only perform one action at

a time.

(3) Consume: A resource that is used or decremented at the start of the execution of an

action for a given game state. To build a home requires 100 wood. This amount is deducted

from the total amount of wood present in the game state at the time of the request.

(4) Produce: A resource that is produced at the end of the execution of an action or the

effect of an action. This amount is added to the game state.

Renewable resources include production buildings and units (workers/military) and

are either required or borrowed by actions. Consumable resources are items like gold,

wood, and food and are consumed by actions. Resources cannot be both renewable and

consumable. In the operational research (OR) community renewable resources are known

as unary resources and are formally defined for RTS games as a resource of capacity

one as presented in [71]. This implies that any two activities requiring the same unary

resource cannot be scheduled concurrently or overlap in execution. In OR consumable

resources are labeled volumetric and represent a collection of resources [71]. Therefore,

concurrency of actions, depending on a volumetric resource’s availability, is possible. With

these definitions of resource, it is possible now to identify the constraints that apply to

scheduling activities requiring unary and/or volumetric resources in RTS games.

A solution to a scheduling problem attempts to minimize the makespan of a set of

jobs - in the case of build-order optimization, actions. In combination with planning, a

new problem forumlates which results in determining a plan to reach a desired goal state

and then minimizing the makespan of the execution of this plan. The conjecture that the

BOO problem is a planning and scheduling problem with producer/consumer constraints

is first addressed in [71]. In RTS games, this scheduling problem consists of two parts:

Scheduling highly cumulative activities and scheduling highly disjunctive activities. Both

pieces are required to minimize the makespan for executing and completing actions to
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reach a desired goal state from an initial state. Cumulative actions are actions that can be

executed or issued concurrently (overlap) on the same resource. This applies to actions

requiring volumetric resources. Disjunctive scheduling consists of pairs of actions that

cannot be executed concurrently on the same resource. This applies to actions requiring

unary resources. It is possible for actions to require both unary and volumetric resources;

however, in the RTS domain an action will most likely only require one unary resource,

but may require multiple volumetric resources. For example, in the popular AOE games

a soldier requires a barracks (unary) and food or wood and gold which the latter are all

volumetric resources.

3.3.3.1 Cumulative Scheduling.

In cumulative scheduling, activities are constrained by volumetric resources. The

constraint is the cumulative producer/consumer constraint [71]. The cumulative constraint

requires that the sum of the amounts of consumable resources required by a set of actions

scheduled at a time t does not exceed the amount of the resource available at time t. For

example, if it costs 100 food and 15 gold to produce a foot solider in an RTS game, and

it costs 200 food and 100 gold to research advanced armor for the foot soldier, then to

execute these actions concurrently, there must be a total of 300 food and 115 gold at the

time of execution of these activities. Notice that these activities are not constrained by

unary resources between eachother. To produce a soldier requires the unary resource of

a barracks and to research armor requires the unary resource of a blacksmith (both are

buildings). With respect to RTS games and volumetric resources in RTS games a slightly

modified representation of the cumulative constraint [26] can be expressed as:
|A|∑

a j∈A

rt
j ≤ Lt (3.2)

Where t is the time of request of the set of actions contained in the action set A, and a is

a member of the set of actions being executed at time t. The amount of a single resource

(gold, food, or gas) required by an activity a j is expressed as r j. The total amount or
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volumetric quantity of the resource available at time t is represented as L. Keep in mind

that more likely than not an activity will require several resources, but this expression

only captures the constraint between actions on a single resource. This constraint must be

satisfied for all volumetric resources shared between actions executed at a time instance t.

3.3.3.2 Disjunctive Scheduling.

It is important to clairfy what a unary resource is in an RTS game. This discussion is

derived from the definition of a unary resource in RTS games from [71]. At first it would

seem that the number of workers can be considered a consumable resource. For each action

that requires a worker, simply assign a worker to the action. However, individual workers

themselves are a resource, so it is better to divide the non-unary resource (total number

of workers) into unary resources (individual workers)[71]. In the RTS domain each non-

unary resource of capacity C is divided into C subsets (one capacity per subset), and each

activity requiring the non-unary resource is divided into C sets and assigned one of the

unary resource’s subsets. For example, if C = 15 workers then there exists 15 subsets of

the unary resource worker. Possible activities requiring a worker include: mining 100 gold,

cutting 100 wood, or building a structure which has a constant duration. Each one of these

actions requires holding onto the unary resource for some constant duration that is generally

fixed and known (derived empirically via a simulation or available data). Therefore with

respect to unary resources in RTS games, each action consists of a duration of execution

and a domain of possible start times. Note that this assumption of having known action

durations does not hold in all RTS games including games like Total Annihilation and

Balanced Annihilation. How this is handled is discussed in later sections.

A popular technique for performing disjunctive scheduling is constraint satisfaction

programming (CSP) [13]. The objective in using CSP to schedule activities under a unary

resource constraint is to reduce the set of possible values for the start and end times of pairs

of activities sharing the unary resource. A precedence ordering is establish for actions as
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follows. As presented in [12] given two actions A and B that both require the same unary

resource, schedule them according to the expression below:

end(A) ≤ start(B) ∨ end(B) ≤ start(A) (3.3)

This expression shows that A precedes B or B precedes A. A solution is found when

the assignment of domain start times satisfies the Boolean expression above. However,

satisfying the above expression generally requires the introduction of additional constraints

such as priorities, release dates and due dates.

In RTS games it is uncommon for a single action to require more than one unary

resource. Therefore it is assumed in this work that an action requires at most one unary

resource. It is possible for actions to require multiple volumetric resources and a single

unary resource - it is assumed that an action requires at most two volumetric resources.

In addition, actions possess known durations, but do not have explicitly required start or

end times (again this applies to most mainstream RTS games). A domain of start times

can be formulated to minimize makespan once a build-order plan is generated. In general,

actions requiring unary resources must first satisfy the cumulative constraint before being

considered for disjunctive scheduling. Whereas actions requiring only volumetric resources

are not subject to disjunctive constraints. Cumulative scheduling influences the manner in

which actions can be considered for disjunctive scheduling. The cumulative constraint

states clearly that an action cannot be executed if the required volumetric resources are

unavailable. Therefore the start time of an action is a function of the time required to

gather the necessary volumetric resources for action execution. The disjunctive constraint

becomes an issue when two actions satisfying cumulative constraints seek concurrent

execution, but require the same unary resource subset. Therefore cumulative scheduling

can be viewed as a release time of an action - in otherwords an additional constraint to

disjunctive scheduling. The disjunctive constraint stipulates an ordering in time between

actions, but does not consider minimizing makespan. The disjunctive constraint is satisfied
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once the boolean relationship between the start and end times of a pair of actions competing

for concurrent execution is satisfied.

A final constraint that is present in RTS games is the exist constraint. This constraint

is implicit to all RTS games and is derived from the technology tree of an RTS game.

Essentially it stipulates that an action A can only be executed if a unary resource R exists.

This is different from the disjunctive constraint, in that the action A does not require use of

the resource R, only that the resource exists. For example, in Starcraft before a barracks can

be constructed a command center must exist. This is not the same constraint imposed by

a barracks being required to build a marine. A way to distinguish the disjunctive and exist

constraint is that a barracks is used or borrowed by the action to build a marine. Essentially

a unary resource cannot be both an exist and disjunctive constraint for a single action to

be executed. When we mention that a unary resource is required by an action we mean

with respect to the disjunctive constraint not the exist constraint. The exist constraint can

be formulated logically as the implication statement:

B =⇒ A (3.4)

Where B and A are actions. This expression draws a logical implication between actions

B and A - B implies A. For example, in Starcraft the unary resource CommandCenter

must exist before a unary resource Barracks can be produced. Therefore, the action

BuildBarracks is B and the action BuildCommandCenter is A. An alternative view is to

bind the variables B and A to the unary resources produced from the actions BuildBarracks

and BuildCommandCenter. From this alternative binding, the unary resource Barracks

cannot exist without the unary resource CommandCenter. This implies that the action

BuildBarracks cannot be taken without action BuildCommandCenter having already

completed.

In considering the scheduling and execution of an action it must pass the three

constraints presented above in the following order: exist, cumulative, and finally
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disjunctive. For example, in the Starcraft game, to build a barracks the following ordering

of constraints, phrased as questions, are: Does command center exist? Are there enough

volumetric resources? Are there any workers (unary resource) available to build the

barracks? The BOO problem is summarized by the three decision questions below.

(1) Given a set of actions as defined by the technology tree of an RTS game(ignoring

feasibility), what various plans can be formulated to satisfy a goal state?

(2) Given a set of volumetric and unary resources, how can the exist, cumulative and

disjunctive constraints be satisfied so as to minimize the makespan of a selected plan?

(3) What is the best tradeoff amongst a set of plans that minimize distance to the goal state

and minimize makespan?

The statements above describe a tradeoff surface between distance to a goal and

makespan. This tradeoff is due to feasibility of perfectly satisfying a goal state. Given

infinite time it may be possible to reach a goal state, but the tradeoff is time. Due to the

nature of RTS games being finite and dynamic, goals will change quickly and the best plan

may be the one that gets the closest with the smallest amount of time. A tradeoff surface

empowers a decision maker to decide what is more important. This work presents BOO as

a three dimensional MOP with three constraints suited for MOEAs.

3.3.4 MO-BOO.

The first decision question on the multi-objective build-order optimization problem

(MO-BOO) flags the issue of how to formulate a plan consisting of a set of actions to reach

a goal state. The best way to formulate this problem is to understand the requirements of

the goal and develop a metric to measure the quality of the effects of the actions taken. To

drive the search toward the best action decisions requires incorporating domain knowledge

with respect to the desired goal and action options. Two heuristic functions have been

defined in [22] for this purpose. The authors of [22] utilize these functions as heuristics

to guide a DFS-BT search through a constrained search space. They select the heuristic
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with the worst value (highest value) to reflect a state in the search tree in order to ensure an

admissible lower bound. The authors present these functions in loose terms, but a formal

mathematical model is presented below.

|AG |∑
iεAG

Di ∗ ({Gi} − {S i}) (3.5)

The actions of the goal state are contained in the set AG with members i. The sets Gi and

S i represent the goal state and current state of the game respectively. The objective is to

identify the actions in Gi that are not contained in S i and determine the cumulative duration

of these actions in Gi not in S i. This heuristic provides a lower bound on the quality of the

current state in terms of its distance from the goal with respect to the duration of actions

not yet taken by S i. With respect to the actions mentioned, i, what is really being examined

are the effects of these actions. For example, if the goal state, Gi, contains a barracks and

the current state of the game S i does not, then this translates into an action build barracks

that must be taken to reach the goal state. All actions have a duration Di.

The second heuristic captures the consumable resource requirement that the goal state

has achieved compared to the current game state.

1
Cr

[
∑
rεAG

(AGr ) − RS r ] (3.6)

This expression translates as follows: given a set of actions in a goal state, AG, each action

has multiple associated consumable or volumetric resource costs represented by r. The

current state has a total number of resources available whose amounts are represented by

RS r . By summing the resource costs of actions in the goal state and subtracting the available

resources in the current state, a duration can be calculated for how long it will take the

current state to achieve the required consumable resources in the goal state. Each resource

will have a rate of collection that is represented by Cr.

55



However, with respect to an MOEA these heuristics can become objective functions

that describe a tradeoff surface which is how they are employed in this work.

min(
|AG |∑
iεAG

Di ∗ ({Gi} − {S i})) (3.7)

min(
1

Cr
[
∑
rεAG

(AGr ) − RS r ]) (3.8)

For the first function the objective is to minimize the duration of actions not taken by state

S i. For the second function the objective is to minimize the difference in required and

available resources in the current state for all volumetric resources required by the actions,

or said in another way to minimize the time required to collect the volumetric resources

needed to execute the set of actions in the goal state or AG.

Ultimately the best values of these functions is zero. However, there is a competing

need between the two objectives. One attempts to minimize the duration of actions

not taken while the other attempts to minimize the difference in required and available

resources. These objectives are commensurable in that they both measure time [24].

Finally a third objective function must be introduced in order to achieve makespan

minimization. This objective function is formulated from literature as a modified

scheduling problem [55].

min(
N∑

iεA

Fi) (3.9)

Where A is the set of actions selected and Fi is the finish time of each action. This

expression closely relates to the scheduling problem of using M machines to schedule

N jobs, M << N. The difference is that not all actions in A compete for the same

resources. Some actions in A can be scheduled concurrently due to different cummulative

and disjunctive constraints, while others must wait for resources to become available due

to disjunctive constraints. In scheduling terms this expression is minimizing the makespan

or duration of the time to complete all actions in A. The only constraints that exist for
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minimizing the makespan are those presented by the actions - exist, cumulative, disjunctive.

Each action has several preconditions before it can be issued. In the case of Starcraft

most actions will have no more than three resource constraints. Generally two of the

resources are volumetric resources and the other is unary (i.e minerals or gas and building

or worker). Once again, this objective function is commensurable with the preceding

objective functions. In summary, the MO-BOO problem is formalized with three objective

functions under cumulative and disjunctive scheduling constraints as well as an implicit

exist constraint.

3.3.5 Representing MO-BOO in MOEA Domain.

The advantage to utilizing an MOEA to solve MO-BOO is an MOEAs ability to

operate along side a simulator. Simulation is a more powerful problem solving technique

than utilizing planning languages because planning languages are often times limited by

scalability and ability to represent complex relationships in some problem domains; such as

action concurrency or ”no moving targets” rule in RTS games [37]. A simulator overcomes

these challenges by the very fact that an expert of a problem domain can generate data that

can utilized by an MOEA to solve the problem. In addition an expert can ensure a simulator

is able to overcome challenges suchs as ”no moving targets” by programming the simulator

to handle these situations appropriately.

For our design and experimentation we utilized the Jmetal MOEA framework. This

framework is freely available online and well documented [44]. The Jmetal framework

provides the capability to generate new problems to be solved by the MOEAs included in

its framework. Simply wrapping the simulator as a problem in Jmetal allowed for fast and

easy integration and access to a multitude of MOEAs.

3.3.5.1 Search and Objective Space of MO-BOO.

The search space of MO-BOO consists of all possible strategic decisions a player

can make in a specified RTS game. There are countably infinite action strings of finite

57



length that can be generated by a player in a single game session. Searching through this

space to optimize the three objective functions is at least a combinatorial NP-complete

problem The search space is not constrained to feasible solutions, infeasible solutions

are allowed. A repairing constraint handling technique is utilized to make infeasible

solutions feasible. Allowing infeasible solutions enables the potential for better solutions

to be found by empowering the algorithm to explore more action plans. This constraint

handeling technique is discussed shortly. Solutions or action strings are represented with

two variable types. Both variable types include a string of actions and have the same

cardinality. The first variable type is an array of integers, with a domain of values ranging

from one to the total number of available strategic actions. A finite number of decision

variables contained in the integer array are initialized to a random ordering of actions. The

second variable type is a binary array. This array is the same size as the integer array

and each decision variable corresponds to whether or not the action defined in the integer

array will be taken or not. A one is used to enforce execution of an action and a zero

is to signify not to take an action. Jmetal provides the ability to define unique solution

types. This solution type was built from preexisting solution types in Jmetal and has

been named the ArrayIntAndBinaryS olutionType. Representing solutions in this manner

enables the possibility for the MOEA to explore more action orderings by not constraining

the solutions to be feasible when they are generated. As solutions are simulated in the

simulator a repairing function flips the decision bits of individual actions depending on

whether or an action was feasible (passed constraints). Therefore, an initially infeasible

solution becomes a feasible solutions that now maps to objective space. This encourages

exploration, diveristy and preserves good building blocks.

Objective space is three dimensional and defined by the three objective functions

outlined in previous sections. The phenotype of an action string from solution space is

a single point in the three dimensional objective space. The Pareto front is a tradeoff
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surface between the three objectives. The domain of the objective space is positive real

numbers which means the objective space is uncountably infinite. A large objective space

allows for more diversity amongst solutions. The objective functions for each solution are

calculated from a inputted goal state provided by the user. The goal state lists the desired

volumetric and unary resources the player would like to reach as well as the combat units.

The solutions attempt to reach this goal state and are not limited in time, but by their

string length. An example of a solution mapping to objective space is provided below for

clarification. This is not an optimal build-order just a simple illustration of the genotype

and phenotype mapping. The action string is defined as the following:

Solution Representation: 7 1 5 7 0 1 5 7 3 6 1111101111

As derived from table 3.1 the solution representation string translates into: Build

Barracks, Collect Mineral, Build Refinery, Build Barracks, Build Worker, Collect Mineral,

Build Refinery, Build Barracks, Make Marine, Build Command Center. Based on the bit

string only 9 of the 10 actions are taken. The one not taken is collect mineral at position 6

in the integer action string starting the index count at one.

Table 3.1: Simulator Available Actions: Minerals (min), Supply (supp), duration (secs)

Action Duration Vol Resource Unary Resource Action Num

Make Marine 20 Min,Supp Barracks 3

Make Worker 20 Min,Supp Command Center 0

Build Supply 40 Min Worker 4

Build Refinery 40 Min Worker 5

Build Cmd Ctr 120 Min Worker 6

Build Barracks 40 Min Worker 7

Collect Gas n/a n/a Worker 2

Collect Min n/a n/a Worker 1
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The objective scores in Table 3.2 reveal the following about the solution selected: The

first objective measured in at 120 seconds. This means that the solution had a lower bound

of 120 seconds, based on the actions remaining to be taken, to reach the goal state. This

is the best possible time remaining if the resource constraints are satisfied. The quality of

this measure or how close to this lower bound the solution is relies on the second objective

which measures the required resources the plan needed in order to reach the goal. A value

of 102.22 reflects that by the time the plan ended it still required 102.22 seconds to meet the

volumetric requirements necessary to satisfy the goal state. Therefore, the first objective

is no longer a lower bound. The third objective measures the total time or makespan of

the execution of the plan. In the end, this plan would have reached the goal state if more

decision variables or the length of the action plan was increased. The goal state is listed

in Table 3.3. Below the goal state table are also included the initial state Table 3.4 from

which the solution starts and the final state reached by execution of the solution in Table 3.5.

Table 3.2: List of Objective Measures

Objective # Fitness Score

1 120.0

2 102.22

3 786.67

Final Solution String:

Solution Representation: 7 1 5 7 0 1 5 7 3 6 0111101111

Notice that the initial action string was an infeasible solution because it required the

first action to be taken as building a barracks, however, this action did not satisfy the

minerals requirement of the initial state of the game, so the planner flipped the decision

bit to zero to make the solution feasible.
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The above objective measures were achieved utilizing a modified version of NSGAII

from the Jmetal framework. More on this is presented in the next section.

Table 3.3: Goal State

Resource Amount

Mineral n/a

Gas n/a

Command Center 2

Barracks 3

Supply 0

Marine 5

Worker 8

Refinery 2

Table 3.4: Initial State

Resource Amount

Mineral 100

Gas 0

Command Center 1

Barracks 0

Supply 5

Marine 0

Worker 5

Refinery 0

Table 3.5: Solution State

Resource Amount

Mineral 162.0

Gas 0

Command Center 2

Barracks 2

Supply 3

Marine 1

Worker 6

Refinery 2

3.3.6 Selecting the MOEA.

MO-BOO consists of a large number of decision variables with multiple constraints.

Its objective functions are cooperating and commensurable. The domain of the objective

space is very large. An interesting characteristic of MO-BOO is the possible relationships

between the actions or decision variables. It is clear that any plan generated or feasible

solution must obey the technology tree of the player’s selected race - Terran in this thesis.

Therefore, an MOEA that can identify these relationships would be advantageous. At the

very least, any selected MOEA to solve MO-BOO must be able to effectively explore a

large search space, be scalable with the number of decision variables and enforce diversity

of solutions. Provided below are some of the MOEAs suitable for MO-BOO.

An algorithm capable of modeling the relationships between decision variables is

worth while for MO-BOO due to the ordering of actions stipulated by the technology

tree. This tree dictates which actions must occur first before other actions are possible.

Therefore, there exists a natural ordering of actions present in RTS games that can be
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exploited. An evolutionary distribution algorithm (EDA) such as the multi-objective

Bayesian optimization algorithm (mBOA) [36] with a proper modeling technique (capable

of modeling the complex relationship of actions within an RTS game) may be able to

determine these relationships and provide insight into the ordering of RTS game actions.

Evolutionary distribution algorithms rely on the initial population to construct an

accurate model of good solutions. The more accurate the model the faster an EDA

algorithm will converge to a Pareto front. The goal of an EDA is to obtain high probabilities

for the best solutions through an iterative process. The various implementations of EDAs

can be identified by the specific probabilistic model utilized for search [31]. These models

range from simple to complex (i.e. Population Based Incremental Learning (PBIL) to

mBOA). It can be argued that the more complex the model the better the search [31]. The

authors of [31] contend that the limitations of EDAs depends largely on the probabilistic

model being utilized. This is because more complex models, such as Bayesian nets, are able

to better determine or model the interactions amongst variables in a problem. This is not

to say that Bayesian nets are the best model, utlimately the modeling technique utilized is

dependent on the complexity of the problem domain - NFL. In the case of MO-BOO, it may

be helpful to utilize known expert strategy data as an initial population to start the search.

Scalability becomes an issue for EDAs in terms of the complexity of modeling relationships

between the decision variables and the computational time required to determine them [31].

An MOEA attempting to solve MO-BOO will utilize a simulator for exploring the best

action plans. Immediately this resembles learning a policy from utility theory [50]. Some

possible MOEAs that cooperate well with simulators and utility theory are multi-objective

Ant-Q (MOAQ) where the Q represents Q− learning [41] and Multi-Objective Montecarlo

Tree Search (MOMCTS) [62] and [15].

NSGAII was selected for its simplicity and scalability with respect to computational

time. The advantage to utilizing NSGAII compared to the other approaches is that NSGAII
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scales better in terms of computation time with respect to population size and decision

variables. This scalability quality is a desirable feature for an online RTS planning

algorithm to possess. In addition, NSGAII is well documented and utilized throughout

the research community for a wide range of MOPs.

3.3.7 NSGAII in Jmetal.

The Nondominated Sorting Genetic Algorithm II (NSGAII) was developed by Deb, et

al [30]. NSGAII is a non-explicit building block (BB) MOEA - it does not directly operate

on or examine the BBs of a genotype [24]. Instead it implicity operates on BBs utilizing

standard genetic operators.

The algorithm starts by instantiating a population of random individuals. Solutions

are evaluated and then ranked and sorted based on nondomination. Essentially the rank of

an individual relates to how many individuals the solution is dominated by with respect to

the known Pareto front. The nondominated solutions in the population are assigned rank 1.

Rank depths are established for each individual member of the population by removing

nondominated solutions and ranking the remaining members. This continues until all

individuals have been ranked. The algorithm then applies a selection routine to obtain

parents and utilizes crossover and mutation to generate offspring. The union of the parents

and offspring is evaluated, ranked and sorted with respect to nondomination. Elitism is

applied to take the best members based on rank and add them to a new population. A

crowding distance is also utilized to ensure diversity of the new population along the Pareto

front.

The Jmetal framework provides an implementation of NSGAII based on the work

presented in [43]. Their version utilizes a quality indicator, specifically hypervolume [24],

to determine the convergence speed of the algorithm. The algorithm takes as parameters

a population size and maximum number of evaluations. In addition Jmetal provides the

ability to substitute various genetic operators into the algorithm for crossover and mutation.
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The use of these operators depends on the solution type utilized by the problem specified

(i.e. binary, real, etc). A distance object is also specified and used to calculate the crowding

distance for diversity.

3.3.8 NSGAII for MO-BOO.

The following provides a description of the search components implemented with the

NSGAII algorithm provided by Jmetal. In addition constraint handeling is discussed. The

section concludes with a discussion on the crowding measure utilized.

3.3.8.1 Selection Method.

The selection method controls what is known as the selection pressure of an MOEA.

Selection pressure falls into a continuum of high to low. A high selection pressure

encourages more elitism or selecting the best solutions from a population for reproduction.

This can commonly have the affect of driving the search to converge too quickly which

violates diversity and preservation of good solutions - two of the three objectives of any

MOEA [24]. A low selection pressure therefore does the opposite. It will typically preserve

diversity due to a slow convergence rate. However, it may not preserve good solutions or

ever converge if there is no pressure to select good solutions. Ultimately selection pressure

relates to exploration of a search space.

To ensure a large exploration of the MO-BOO selection space, binary tournament with

k = 2 was utilized with NSGAII. Binary tournament selects k members from a population

and selects the best solution from the k members. The advantage of binary tournament

is that it is simple and has low selection pressure compared to alternative approaches like

roulette wheel selection, stochastic universal sampling and rank-based selection [59].

3.3.8.2 Reproduction Operators.

Immediately after the selection phase the reproduction phase begins. In NSGAII

reproduction consists of the application of a crossover operation followed by a mutation

operation. A discussion on the operators selected for MO-BOO is presented.
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Crossover is utilized to ensure a child of two selected parents inherits the good genes

of the parents. There are a multitude of variations of crossover, however, for this design

single point crossover is utilized. Single point crossover takes two parents and produces

two children by selecting a crossover point in the genotypes of the parents and swapping

the genes of the parents to generate two new individuals or offspring. Associated with

crossover is a crossover rate. This rate relates to how often the operator is performed on

pairs of parents. Crossover exploits good solutions. In the case of MO-BOO crossover acts

on the integer portion of the solution type or the actions.

Mutation is the final operator and is applied to the child generated by crossover. It

takes a probability parameter that corresponds to the probability of modifying a single gene

in the genotype of an offspring. The probability is generally set to 1/k where k represents

the number of genes or actions in an individual. This generally results in at least one gene

of an offspring being modified. The mutation operator utilized is bit-flip mutation. It acts

on the binary string of the solution type which determines whether or not an action should

be taken.

3.3.8.3 Constraint Handling.

The decision space of MO-BOO consists of feasible and infeasible solutions. To

ensure convergence toward the Pareto front a mechansim inside the evaluation routine of

the simulator was developed to correct infeasible solutions so that they become feasible.

The mechanism simply switches the bit of an action that is designated by the simulator as

not being a feasible action to take. The benefit of this mechanism is that the action is not

lost. Depending on the ordering of actions or the availability of resources, an action may

be infeasible for one solution, but possibly after a crossover operation and mutation the

action becomes feasible. Once again this is to ensure exploration of the search space and

to provide the search algorithm with the ability to discover new and creative action plans

by lowering the constraints across the search space.
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3.3.8.4 Crowding Distance.

The crowding distance in NSGAII is utilized to ensure diversity and good spread

of points across the Pareto front. Only the least crowded points are accepted into the

next population of points. In Jmetal the distance of a solution to neighboring solutions

is calculated with respect to each objective function. For a given objective function the

two closest neighbors on either side of a solution have their difference taken with respect

to the objective function. This distance is then normalized with respect to the maximum

and minimum value of the objective function for the current Pareto front. Distance is then

aggregated across all objective functions in the manner just presented. The solutions with

the higher distance are taken.

3.3.9 Approach to Online Strategic Planning for RTS Agent.

This subsection briefly presents the modified architecture of the agent derived from the

original AFIT agent developed in [61]. The main agent module depicted in Figure 3.4 is

written in Python and is a multi-scale agent. It is multi-scale in that it has separate managers

responsible for specific problem domains of the RTS game as discussed in chapter two. The

dotted lines in the figure depict managers that are not yet implemented, however, can be

easily supported by the agent framework. Notice that the build manager, strategy manager

and unit manager are implemented in the RTS agent.

The build manager is responsible for issuing commands to unary units or units that

produce structures or other units. In addition, the build manager monitors state information

with respect to volumetric and unary resources. The unit manager is also currently the

tactics manager, however, the tactics are scripted and very rudimentary. The unit manager

keeps track of a defense group and attack group. Essentially as combat units are constructed

they are assigned to the defense group. Once the defense group reaches a certain size

specification the defense group units are converted to attack group units and are sent to

attack the enemy base. As new units are created they are assigned to the defense group.
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This defense to attack group conversion of combat units continues until the enemy or the

player is destroyed. The only change to the original AFIT agent is the strategy manager.

Previously the strategy manager was scripted to satisfy specific offensive, defensive, and

economic parameters for a stipulated strategy - a static strategy manager. With the new

agent framework, the strategy manager possesses a planning tool which it utilizes to execute

a configured strategy. The strategy manager looks to the CBR mechanism for goals and

goal-ordering and then performs a search to determine the build-orders.

Figure 3.4: AFIT multi-scale agent with CBR for strategic planning.
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Figure 3.5 provides a high-level view of how the strategy manager determines which

goal to work toward, and how it performs a search to obtain a good build-order plan to

satisfy a goal. The strategy manager starts by communicating with the CBR mechanism to

determine which goal it should work toward. The CBR contains a database of cases. Unlike

other CBR cases such as [65] which contain information on player and opponent states and

map properties, the CBR cases we have implemented simply define a desired goal state.

This goal state specifies desired unary and combat unit amounts and volumetric resource

levels. Cases are organized under a finite number of player strategies. Duplicate cases

may exist in the set of strategies included in the CBR database. This simplification of the

CBR mechanism lays a foundation for future enhancements. In addition, the current agent

architecture lacks a scouting manager, therefore, information on the opponent is limited.

Via a case selection function or distance metric, a case or goal is matched with the agent’s

current game state. The case with the smallest distance is selected for the agent to plan

across. The details of the selected case are passed to the planning tool. The planning

tool then starts searching for a build-order plan from the agent’s current state until a build-

order is discovered that brings the agent the closest to the goal state depending on the three

objective functions.
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Figure 3.5: Agent Strategy Manager

Figure 3.6 is the strategic planning tool. From left-to-right, the strategic planning

tool consists of three components: XML schema files describing the RTS game elements

and agent game state, the RTS build-order simulator, and the JMetalCpp framework. This

planning tool is embedded in the strategy manager of the RTS agent. As the game is

played the agent calls the planning tool via an executable generated from the JMetalCpp

framework, and only after the CBR mechanism provides it with a goal state to move toward.

The JMetalCpp executable is the NSGAII algorithm compiled with specified parameters.

The agent communicates to the planning tool via the XML schema files by writing out the

current agent game state and goal state to the XML files. Once called by the agent, the

NSGAII executable utilizes a user-defined C++ source file that describes a multi-objective

problem type called BOO to initialize the Python interpreter and run the RTS simulator.

The RTS simulator is responsible for reading in the XML files and executing build-orders

provided to it by the NSGAII algorithm. The simulator runs one build-order plan at a time.

Once it completes a build-order it returns the fitness score of the build-order and notifies
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the BOO problem if it made any modifications to the decision bits of the build-order to

ensure feasibility of the action string. This continues until the NSGAII algorithm stops and

returns an approximately optimal build-order plan. Essentially NSGAII utilizes the BOO

problem to communicate to the RTS simulator. Python is embedded in the BOO problem

to call the Python RTS simulator. Note that the final version of the BA simulator utilized by

our BA agent is implemented in C++ and accessed via dynamically linked libraries. More

on this is discussed in Chapter 4.

Figure 3.6: Strategic Planning Tool

3.3.10 Universal RTS Build-Order Simulator Architecture.

To simulate build-order executions, we developed an RTS game build-order simulator

architecture. The prototype was designed and implemented in Python. It is important

to state that the RTS game simulator architecture only simulates build-order decisions

it does not simulate tactical decisions (i.e scouting, attacking, moving units). From the

architectural design, two RTS simulators were created in order to meet the objectives of this

work. The Python language was selected in order to alleviate the burden of implementation,

thereby allowing us to focus on design. In addition, utilizing Python allowed us to produce

a portable, robust and generic RTS game build-order simulator quickly and easily. The
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advantage to utilizing Python, an interpretative language based on C, over higher level

languages like C++ or Java, is that it also supports object-oriented development along with

a library of easy to use and polymorphic data structures. Python is an excellent prototyping

language that enabled us to focus on the design of our mathematical model of the build-

order problem as well as the setup of the simulator compared to spending large amounts

of time thinking about coding implementation. In general, to write something in Python

takes far less time than in C++ or Java and with less lines of code. However, there is a

tradeoff in computational time which is addressed in chapter four. We greatly endeavored

to develop a RTS build-order simulator that could be easily adapted and utilized by other

researchers. How this is possible will become clear shortly. Finally, embedding Python

into C or C++ code is fairly straight forward and enabled us to integrate the simulator with

the Jmetal MOEA C++ framework. Essentially the tradeoff in selecting Python over C++

was in reducing development time to enable validation and solidification of our design cost

of an increase in computational time.

The simulator architecture is designed to be a customizable RTS game strategic

decision-making (build-order) simulator. It supports RTS games like Age of Empires

(AOE), Starcraft, and Wargus. It is important to note that not all RTS games follow the

same formula. For example, the Total Annihilation and BA games are fundamentally

different from games like Starcraft and AOE largely in regards to how the economies

are structured. This difference required the development of two separate simulators;

however, the simulators both respect the MO-BOO model with only subtle differences in

implementation. To distinguish these two types of RTS games, games like Starcraft, AOE

or Wargus are labeled cumulative economy games and games like Total Annhilation and

BA are labeled non-cumulative economy games. Their respective simulators are identified

in the same manner. The justification for this naming scheme will become clear in later

sub-sections.
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The simulator architecture defines an RTS game with seven XML schema files. The

schema files fall into three categories: initial game state, goal game state, commands. The

initial game state is defined by three xml files. The goal state is defined by three XML files,

and the commands category is defined by one XML file. These seven schema files define a

single RTS game. Simply put, any RTS game can be simulated by providing its definition in

the XML files. We have currently simulated two RTS games with this framework: Starcraft

Broodwars and Balanced Annihilation. These games are both RTS games, but have very

different game mechanics or strategic approaches. The code for the simulators and their

integration into jMetalCpp is available online at [1]. Along with the source code is also

included the schema files for Starcraft and Balanced Annihilation.

The simulator architecture is designed around the mathematical formulation of the

MO-BOO problem presented in this chapter. It strictly enforces the exist, cumulative,

and disjunctive constraints, however, the objective functions can be easily modified to

allow users to evaluate various objective functions around the stipulated constraints. The

simulator architecture incorporates a fast-forward approach [22][52] in order to evaluate

build-order plans quickly.

With respect to implementation, the cumulative and non-cumulative simulators take

as input a single action string as defined in our Jmetal solution type. The simulators

sequentially assign actions to unary resources. Before being assigned to unary resources,

actions must satisfy the exist and cumulative constraints. If these two constraints are

satisfied then the simulator attempts to allocate the action to a unary resource which is

where the disjunctive constraint must be satisfied. To satisfy this constraint most actions

are allocated to a unary resource by waiting until the resource completes the current action

it is executing. It is important to stipulate that the RTS simulators only simulate build-

orders or macroactions. Tactical decisions like sending out scouts, attacking, moving units,
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or damage are not simulated actions. The simulators are strictly defined for simulating

build-order decisions or decisions at the strategic level.

3.3.10.1 Handling Actions and Effects with RTS Simulator Architecture.

Similar to planning definition domain language (PDDL) and other planning tools,

actions have effects that must be considered after completion of an action. There are

three types of effects of actions in RTS games that must be considered: (1) Unary effects,

(2) Volumetric effects, and (3) primary effects. Unary and volumetric effects correspond

to an action being selected and scheduled for execution. Immediately upon execution

there are direct effects on unary and volumetric resources. These include making a unary

resource unavailable to other actions (disjunctive constraint) and decrementing the quantity

of volumetric resources available. However, these effects are trivial. The important effect

is the primary effect of an action. The primary effect is the objective of the action. For

example, the primary effect of a ’build worker’ action is to produce an additional worker

for the game state. In general, unary and volumetric effects occur immediately at the start

of an action, and primary effects occur at the completion of an action. In some games, like

BA and Starcraft, actions have more than one primary effect. For example, in BA building

a metal extractor has the unary effect of making the commander busy or unavailable, it has

the volumetric effect of consuming a calculated production rate of volumetric resources,

and two primary effects. The first effect is the increase in collection rate of metal and the

second is the increase in the capacity of the agent to store metal. Due to the diversity

and in some cases complexity of primary effects the RTS simulator architecture does not

strictly define a set of primary effects. Instead these effects are hard-coded into a single

function of the simulator that can be modified by a designer as necessary using conditional

statements. However, these primary effects are included as attributes for commands defined

in the command.xml schema file which translate into variables or constants defined in

the simulator code. As the simulator completes an action/command it checks the action’s
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effects list and processes them as defined in the process effects function of the simulator.

The reason for doing this is to allow more flexibility in including and processing effects for

actions. An example of why this flexibility is desirable is provided in table 3.7. Also to

provide an illustrative example of primary effects the two tables 3.6 and 3.7 present primary

effects of BA and Starcraft:

Table 3.6: The table depicts all the primary effects currently programmed into the BA

simulator. It introduces the effects by providing a corresponding command that would

cause the effect, and what the outcome of the effect will be relative to the command.

Command Name Effect Name Description

Build ARMlab Increment Increases a unary resource’s quantity given by the command

- in this case the total # of factories.

Build MetalEx Accumulate Metal Utilized to increase the metal collection rate.

Build Solar Accumulate NRG Utilized to increase the energy collection rate.

Build Tank Increment Unit Utilized to increase a combat unit or non-unary unit count.

Assist Commander Increment CmdWorkTime Utilized to increase the Commander’s worktime.

Assist ARMlab Increment FacWorkTime Utilized to increase a factory’s worktime.

Build MetalStorage Inc Metal Cap Utilized to increase the metal storage capacity.

Build SolarStorage Inc NRG Cap Utilized to increase the energy storage capacity.
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Table 3.7: The table depicts all the primary effects currently programmed into the Starcraft

simulator. It introduces the effects by providing a corresponding command that would

cause the effect, and what the outcome of the effect will be relative to the command. Note

the flexibility allotted for defining effects. For example, the simulator treats minerals, gas,

and supply as volumetric resources, however, minerals and gas are gatherable resources

while supply must be built. Therefore, a different effect is defined for gathering volumetric

resources (gas and minerals) and non-gathering volumetric resources (supply). In addition,

both gathering actions own two primary effects: Hold and Accumulate.

Command Name Effect Name Description

Gather Mineral Hold Holds a worker to infinitely collect a specified volumetric gathering

resource (i.e. minerals and gas).

Gather Gas Accumulate Increments the number of workers collecting a volumetric resources - in this case gas.

Build Marine Unit Increment Utilized to increase a combat unit or non-unary unit count.

Build SupplyDepot Accumulate Fixed Increases the total amount of Non-gathering volumetric resources

(excludes gas and minerals)

Build Barracks Increment Increases a unary resource’s quantity given by the command

- in this case the total # of barracks.

3.3.10.2 Advantages and Limitations.

Advantages of our simulator architecture are that you can simulate build-orders for

any RTS game that falls into the cumulative or non-cumulative economy categories by

defining the game with seven xml schema files. In addition, the simulator enables users

to define their own objective functions for scoring build-orders by modifying the Python

fitness calculation function defined in the simulator. Since the code is written in Python

the simulator is highly portable to any operating system supporting the Python interpreter

and can be embedded in most high level languages including C, C++ and Java. A user

is provided a framework in which they only need to focus on defining the RTS game

they want to simulate. To define a game requires providing definitions in the seven xml
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schema files, ensuring the desired effects of actions are captured in a one-to-one matching

from the command.xml file to the process effects function of the simulator itself. In

addition, the cumulative economy simulator is implicitly implemented with a fast-forward

feature to reduce the computation time in scoring build-orders. An important advantage

to our simulator architecture is how actions and effects are handled as discussed in section

3.3.10.1. Our approach enables designers to define any strategic level command - strategic

level in that it is a build-order command - and its corresponding primary effects. Similar

to other simulators from literature [22], our simulator does not take into account map

information on locations of resource sites or building locations. We identify this missing

variable as the travel time variable. This results in the time required to travel to build sites

or volumetric resource gathering locations being left out when producing build-orders. A

resolution to this variable would be to provide the simulator with construction unit locations

and build site locations in order to account for travel times when determining build-orders.

In addition, the simulator assumes infinite volumetric resources. In some RTS games, such

as BA, infinite volumetric resources is not an issue, however, for cumulative economic

games like Starcraft and AOE, specific mining sites supply a finite amount of a resource.

For example, a gold mine in AOE will disappear after a player’s workers have extracted the

finite amount of gold available from the mine.

3.3.11 Balanced Annihilation Simulator.

As presented earlier, the MO-BOO problem consists of three optimization functions

and three constraints. These constraints are the exist, cumulative, and disjunctive

constraints. However, unlike cumulative economy games, which must satisfy the

cumulative constraint prior to issuing and executing actions, BA is a non-cumulative

economy game. In otherwords, issuing and executing an action does not require satisfying

the cumulative constraint. In fact this constraint is absent from the MO-BOO model that

approximates BA’s strategic decision making process. This stems from the fact that BA
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utilizes rates of collection and production for assigning volumetric resources to actions.

Essentially an action is always feasible with respect to volumetric resources in BA so long

as at least one unit is collecting those resources. The rate of collection of a volumetric

resource is shared amongst the competing unary resources whose actions’ require the

volumetric resource. Each action receives a percentage of the rate of collection based

on the unary resource’s worktime. In BA worktimes define how quickly a particular unary

resource can build a structure or unit based upon build duration of the structure or unit

being constructed. Build durations are provided by the official BA website [3]. By dividing

the worktime of a construction unit into the build duration a build time can be computed

in seconds. As stated before this build time in seconds will fluctuate depending on the

availability of volumetric resources. If there is a single unary resource executing a single

action, a maximum production rate for the unary resource can be calculated given the unary

resource’s worktime, the duration of the action to be completed, and the current collection

rates of the volumetric resources the unary resource requires for production or executing the

action. This production rate identifies how much of a volumetric resource a unary resource

will utilize per second to complete a target action. As more unary resources simultaneously

operate to execute actions, the collection rate of a shared volumetric resource is used

to determine how much each unary resource is allocated to use for production. This

shared production rate is weighted according to the worktimes of unary resources. A

higher worktime guarantees a higher shared production rate versus unary resources with

lower worktimes. A unary resources shared production rate will be equal to or less than

its maximum production rate depending on the summation of the production rates of all

unary resources currently executing and the total collection rate of the shared volumetric

resource. The obvious effect of shared production rates is that there is no exact timing

for when a unary resource will complete it’s action. For example, if a unary resource

is provided its maximum production rate then a completion time can be calculated very
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simply by dividing the actions duration by the unary resource’s worktime. However, if the

unary resource is sharing volumetric resources its production rate will fluctuate as other

unary resources start and/or complete actions. This means an exact action completion

time cannot be determined as can be computed for cumulative economy RTS games

like Starcraft and AOE. This makes planning in the non-cumulative RTS game domain

more complex than for cumulative economy games since cumulative economy games have

known action durations. Known action durations translates into known completion times

and start times. As will be discussed later, this led to not being able to efficiently add

fast-forward simulation to the non-cumulative RTS game simulator.

This is obviously different from Starcraft or cumulative economies where an action

is designated infeasible if the current game state amount of a volumetric resource is not

available. In addition, if there is enough volumetric resource to accept the action, the total

required amount of the resource is subtracted immediately - there is no sharing or rates

of production versus rates of collection. This means an actions completion time is always

known. This simplifies fast-forward simulation enabling it to be added to the cumulative

economy RTS simulator.

Provided in Table 3.8 and Table 3.9 is a description of the seven schema files and their

attributes utilized to define the BA game for the non-cumulative RTS simulator. Though the

Starcraft simulator only supports 9 commands at the moment, the BA simulator command

XML schema file defines 21 unique commands as derived from the Technology Tree of the

BA game.
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Table 3.8: BA Simulator Schema Files (XML)

File Name State Definition Description

combat unit initial/current Current number of combat unit or non-unary units agent possesses

unit goal Goal Non-unary resource unit goals (i.e. combat units)

command N/A List of RTS game actions agent can take

unary resource initial/current Current number and type of unary resources in existence

unary goal Goal Unary resource goals

vol resource initial/current Current quantities of volumetric resources

vol goal Goal Volumetric resource goals

Table 3.9: Attributes (Attr) of the seven XML schema files. MC: Metal Cost; EC: Energy

Cost; CR: Collection Rate; PR: Production Rate; Res: Resource; Vol: Volumetric; Act:

Action

XML File Name # Attr Attr

combat unit 2 Unit Type Current Amount

unit goal 5 Unit Type Time to Build Target Amount MC per Unit EC per Unit

command 6 Act Name Duration Vol Res List Unary Res List Exist List Effects List

unary resource 2 Unit Type Current Amount

unary goal 5 Unit Type Time to Build Target Amount MC per Unit EC per Unit

vol resource 6 Res Type Capacity Current Amount CR PR

vol goal 3 Res Name Collection Rate Initial Amount
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IV. Design of Experiments

4.1 Introduction

This chapter introduces the objectives of our experiments and their importance. A

discussion on parameter settings for the NSGAII algorithm and our planning tool is also

presented. The objectives of our experiments are as follows:

1. The first experimental objective of this work is to validate that the mathematical

model of the build-order problem introduced in Chapter 3 is capable of planning

in the RTS domain. This is demonstrated across planning goals for Starcraft:

Broodwars and Balanced Annihilation.

2. The second experimental objective is to demonstrate the capabilities of the

planning tool across varying parameter settings. This is conceptualized via a

Pareto front.

3. The third experimental objective is to demonstrate that our strategic planning

tool, utilizing the mathematical model, can be used as an online planning tool

by an RTS agent to play a full RTS game at or near an expert level.

4. The fourth experimental objective is to validate a method for determining player

skill-level in an RTS game. This objective is achieved in connection with the first

three experimental objectives.

As stated in Chapter 3, the Python language is selected for developing the RTS game

simulator in order to develop a simulator that can be easily modified and run. Through

fast modifications and test runs we are able to ensure valid design of our build-order MOP

and RTS simulations for the various RTS games. Another key goal was to provide source
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code that can be easily understood and adapted by other researchers interested in the MO-

BOO design. As anticipated, the trade-off to this flexibility and shorter development time

is slower computational time in planning, compared to a C++ or Java implementation of

the RTS simulator. With a valid and functional Python prototype, the strategic simulator

is translated into C++. This translation reduces planning time by greater than 85%. This

also enables moving the planner into the online phase of our development process, which

entails integrating the planning tool with a pre-existing agent developed in [61] for BA.

Recall that the simulator does not take into account two variables: travel time and finite

volumetric resources. Since the simulator does not take into account map information when

determining build-orders, this results in build-orders that do not account for travel time of

construction units to build-sites. The second variable is that the simulator is designed under

the assumption that volumetric resource sites possess an infinite amount of resources. This

second variable is only an issue for Starcraft, in BA volumetric sites are in fact infinite. To

overcome the first variable in BA, we position all agents and opponents in a starting location

so that they are as close to resource sites as possible. This keeps the game fair and also

minimizes the affects of travel time in the overall execution time of the strategy provided by

the strategic planning tool to agent Boo. To remove this variable would involve providing

the simulator with map information in terms of build-site locations and construction unit

locations.

4.2 Experimental Setup

4.2.1 Machine and Software Specifications.

For experimentation we utilized the Ubuntu 11.10 32-bit operating system, Spring En-

gine V91.0, Balanced Annihilation V7.72, Starcraft: BroodWars, Python 2.7, JMetalCPP

v1.0.1. All C and C++ code can be compiled with GCC 4.6.1 and Intel’s compiler ICC.

The hardware specifications are 8GB Memory, 2.80GHz Intel Core2 Duo, and NVIDIA

Quadro. Matlab 2013a was utilized for analysis.
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4.2.2 Balanced Annihilation Agents.

This section introduces the three agents used for conducting our experiments. Agents

LJD and BOO were both developed at AFIT to play the BA game. Agent E323 comes as a

standard AI for the Spring Engine BA game.

4.2.2.1 Agent LJD.

Agent LJD is the BA multi-scale AI developed at AFIT for the Spring Engine. We

consider agent LJD to behave at an expert level with regards to strategy execution because

the agent’s strategy manager is scripted by an expert player. More on this agent and its

design can be found in [61]. Agent LJD begins a game session by establishing an economy

which consists of building metal extractors for gathering the volumetric resource metal,

and solar panels for gathering the volumetric resource energy. Once volumetric resources

are being gathered, the agent then builds a factory (unary resource) capable of producing

combat units. In BA there are three types of factories: k-bot lab, vehicle plant, and aircraft

plant. A vehicle plant produces tanks and other wheeled or tracked combat vehicles, and

the k-bot lab produces mechanized assault bots. It is important to note that agent LJD

never advances to a higher technology level. In BA there are two technology levels: basic

and advance. Each unit factory requires the basic version to be produced first before

advancement to the second technology level. Agent LJD always remains at technology

level one because this is how the agent was scripted in [61]. The quantity and names of the

respective combat units produced under agent LJD’s strategies are outlined in Table 4.17.

Agent LJD continues to produce the same exact combat units specified in the table. With

completion of a set of combat units a new iteration begins. This iteration of unit production

is known as attack waves.

Agent LJD implements a very simple tactical process. As combat units are produced

they are assigned to defend the commander. As soon as the first wave of troops are

complete, this wave then becomes an attack group and marches toward the enemy base.
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As more units are produced they are assigned to defend the commander. This cycles goes

on until the game is won or loss.

4.2.2.2 Agent BOO.

Agent BOO - Build-Order Optimization - is our newly implemented agent. This agent

utilizes our strategic planning tool to discover and execute build-orders that are as good as

or better than expert build-orders. For experimental purposes only, Agent BOO executes

any one of the strategies outlined in Table 4.17. In an offline process, the strategies are

manually broken down into subgoals and placed into the CBR case dataset. Once assigned

a strategy, agent BOO’s planner selects a case from that specified strategies case set. The

planner selects a case based upon agent BOO’s current game state and passes the goals of

the case to the planning tool. Throughout experimentation Agent BOO’s planning window

is limited to no more than fifteen actions in order to minimize planning times and enforce

intermediate goal planning [19]. More on this is presented in section 4.4.2. A planning

window as defined in [63] is the maximum number of actions an agent can execute to

reach a goal state. Figure 4.1 presents the technology tree of BA that agent BOO is able

to traverse. Once more, agent BOO inherits the technology level restriction of agent LJD.

With the current BA simulator implementation, agent BOO is capable of planning across

21 unique decisions. These commands are derived from the technology tree presented in

4.1 as well as from agent LJD. They enable agent BOO to plan across the entire decision

space captured in the technology tree. The planner can be modified to incorporate more

BA RTS actions via the Command.xml schema file, however, it was unnecessary for our

experiments since agent BOO is limited to the first technology level.
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Volumetric Resource Collection
Defense

Technology Level One
Unit Factories and Units

K-Bots Tanks

Commander Unit

Solar Panel

Metal Extractor

Anti-Air Tower

Light Laser Tower

K-Bot Lab Vehicle Plant

Figure 4.1: The level one technology tree from the BA game that agent BOO is able to

traverse.

4.2.2.3 Agent E323.

The Spring RTS engine provides several built-in AI opponents. For this work we

selected agent E323 to play against BOO in order to observe two things: how agent

BOO responds to an opposing force, and how adaptable agent BOO is to losing units and

infrastructure. Agent E323 utilizes a combination of two strategies: k-bot rush and blitz.

It first sends an initial wave of k-bots to hinder enemy infrastructure - slow down resource

consumption - and then begins building a larger attack force to send out in waves, and
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builds light defenses around its home base. It is important to clarify that we assume agent

E323 is a scripted agent and is not designed around the multi-scale agent framework. This

is unlike agent LJD and agent BOO. Agent LJD is a multi-scale agent with its managers’

behaviors scripted by an expert. Whereas agent BOO is a derivation of agent LJD with

all managers scripted except for the strategic manager which utilizes our strategic planning

tool to generate build-orders and select goals.

4.2.3 Metrics.

The DBD metric complements the third objective function of our build-order MOP

- makespan. It is expected that a player with a lower DBD produces build-orders with

smaller makespans than players with higher DBD values. This argument is derived from

our conjecture that an expert player executes strategies faster than non-expert players. A

strategy is executed as an explicitly defined build-order across the duration of the game or

the concatenation of all build-orders executed throughout the game. We utilize the DBD

metric to quantify agent BOO and agent LJD in order to provide more perspective on how

the two agents compare relative to strategy implementation or skill level in executing a

strategy.

4.2.3.1 Measuring Player Skill.

In Chapter 3 the arithmetic DBD measure is first introduced. After further evaluation,

we formulated a second version of the DBD metric which we call the geometric DBD. The

following expression is geometric DBD (ensuring to remove feature values of zero from

the computation):

∏E
i=1(Di+1 − Di) ∗ 1000 ∗ N

(E − N)
(4.1)

E is the total number of features or decisions in the player vector and N is the

total number of times the player does not make a decision - in a player vector this is

expressed as the value zero. The geometric mean maintains the consistency of the data
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over the entire time period the player is making decisions, whereas the arithmetic mean is

susceptible to infrequent decisions times that may exceed the median decision time. This

is an important to distinction because both metrics can be utilized to understand the skill

level of RTS players. The arithmetic DBD provides a single value that states clearly which

expert completed the strategy first. On the other hand, the geometric DBD captures the

consistency between milestone decisions in a players strategy execution. This distinction is

clearer in 4.5.3.5. Once again we provide the plots of the non-filtered and filtered Starcraft

expert player data first presented in Chapter 3, where filtered means we removed players

from the data that did not satisfy a decision threshold of at least 20 decisions. We assume

that players who make fewer than 20 decisions over the entire feature set of 50 possible

decisions are not experts but outliers in the dataset.

From figure 4.3 it is clear that experts across the three strategies operate within a

distinct geometric DBD range between 1.4 to 2.4. Notice that the arithmetic means of the

geometric DBD for the filtered expert strategies are all close to 1.8 and their corrected

sample standard deviations are close to 0.2. This data reveals a consistency in expert

strategy execution time regardless of the strategy being executed. Figure 4.2 is depicts

the non-filtered dataset of strategies.
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Figure 4.2: Distribution of the geometric DBD metric for expert players of Starcraft:

Broodwars. This data is prior to filtering for outliers.
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Figure 4.3: Filtered for outliers, these histograms depict the distribution of the geometric

DBD metric for expert players of Starcraft: Broodwars.

4.3 Experimental Objective One

To achieve experimental objective one we have designed the following experiment.

We utilize the Starcraft strategic planner in an offline setting and provide initial build-

order goals from the Starcraft: Broodwars game. Results on BA are presented in later

sections. The planning tool then outputs the strategy along with its fitness values for the

three objective functions (ob jective1, ob jective2, ob jective3).
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4.3.1 Experimental Objective One Results and Analysis.

We utilized the following parameters displayed in Tables 4.1 and 4.2 for the Python

implementation of the Starcraft strategic planner. Recall that the Python implementation is

only suitable for offline planning due to the large computational time.

Table 4.1: Starcraft Python Planner: NSGAII parameters and average execution time -

execution time is not a parameter, but the time to determine a build-order.

Population Size Num Evaluations Mutation Rate Crossover Rate Bit Length Offline Execution Time (secs)

50 6000 1/k 0.9 k=60 37.69

Table 4.2: Starcraft Python Planner: Simulator Parameters

Mineral Collect Rate Gas Collect Rate

1.35/sec per worker 2.1/sec per worker

The reason for using the parameter settings described in Table 4.1 is because we

empirically found these to be satisfying parameter values for the BA online planner written

in C++ - this is discussed more in Sections 4.4 and 4.5. We conjecture that if we translated

the Starcraft Python simulator into C++ code we could effectively reduce the computational

time so that the Starcraft planner could be utilized as an online planner just as the BA C++

implementation is utilized by our BA agent in Section 4.5. Also note, that a Starcraft

C++ version would most likely run faster than our current BA C++ implementation due

to the fact that the Starcraft build-order simulator supports fast-forward simulation [22],

whereas, the BA C++ simulator does not. Integrating our planner into a Starcraft agent is

not an objective of our research. We simply include the discussion to demonstrate that our

mathematical model or build-order MOP and design is capable of solving the build-order

problem for various RTS games.
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The planner is first provided an initial game state in Table 4.3 and a goal state in

Table 4.4 defined via XML schema files. By running the planner over four iterations and

injecting the best solution found over each previous iteration into the new population of

the NSGAII algorithm, we obtained the build-order presented in Table 4.6. The final state

reached is presented in Table 4.5. We also observed that by increasing the evaluations to

twenty-four thousand our planner found the same build-order in one run; however, twenty-

four thousand evaluations is not suitable for online planning due to computation time. Our

planning tool is able to determine near-optimal build-orders without prior build-order plans

from an expert strategy and minimal parameter settings. Bounding the search using expert

domain knowledge is unnecessary, unlike global search techniques such as DFS and BFS

[22][19].

Table 4.3: Starcraft: Initial

State

Resource Amount

Mineral 100

Gas 0

Cmd Ctr 1

Barracks 0

Supply 5

Marine 0

Worker 5

Refinery 0

Table 4.4: Starcraft: Goal

Definition

Resource Amount

Mineral -

Gas -

Cmd Ctr -

Barracks -

Supply -

Marine 7

Worker -

Refinery -

Table 4.5: Game state

reached by planner offline.

Resource Amount

Mineral 122

Gas 0

Cmd Ctr 1

Barracks 2

Supply 7

Marine 7

Worker 6

Refinery 0
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The build-order generated from the planner is presented in Table 4.6. The build-

order starts by assigning three of the five workers from the initial game state to gathering

minerals. It then assigns the remaining two workers to construct two barracks and a supply

depot. While the construction is occurring, marines are trained at the barracks as they

complete, and the command center (Cmd Ctr) is then tasked to build an additional worker.

Lastly, a fourth worker is tasked to mine minerals and a final marine is trained. The score of

this build-order (0,0,192) signifies that the best time to train seven marines is 192 seconds

if the initial game state is as described in Table 4.3. However, the strategic planning tool is

intended to receive goals and goal-ordering from an expert strategy utilizing a case-based

reasoning mechanism. This example is a toy demonstration of the planners capability

to reach a goal state as quickly as possible from an initial state without the assistance

of an expert build-order. In our Starcraft simulator, once a worker is assigned to mine

minerals or collect gas they can never be reassigned for another task. Also workers utilized

for construction can be assigned to any construction project or resource gathering action;

however, once assigned for resource gathering they cannot be released.

Table 4.6: Build-order Plan Returned. Collect Mineral (M), Build Barracks(B),

Build Supply(Sp) Train Marine(TM), Train Worker (W). The fitness score is (0,0,192).

M M M B B Sp TM TM W TM TM TM TM M TM

4.4 Experimental Objective Two

This section details our design decisions for modeling the build-order problem as a

MOP and the significance of the genotype utilized by our MOEA. The focus of this section

is to present the capabilities of the planning tool prior to its application in the RTS Spring

Engine with agent BOO.
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4.4.1 Pareto Front.

As presented in chapter three the build-order MOP or MO-BOO problem is defined

by three objective functions and three constraints:

min(
|AG |∑
iεAG

Di ∗ ({Gi} − {S i})) (4.2)

min(
1

Cr
[
∑
rεAG

(AGr ) − RS r ]) (4.3)

min(
N∑

iεA

Fi) (4.4)

constraints,

B =⇒ A (4.5)

|A|∑
a j∈A

rt
j ≤ Lt (4.6)

end time(A) ≤ start time(B) ∨ end time(B) ≤ start time(A) (4.7)

MO-BOO Objective Functions

1. The first objective function 4.2 is to minimize the duration of actions from the set AG

defined by the goal state not taken by the agent in its current game state S i.

2. The second objective function 4.3 is to minimize the difference in required volumetric

resources (defined by the goal state and its action set) and available volumetric

resources in the agent’s current state for all volumetric resources required by the

actions in AG, or said in another, way to minimize the time required to collect the

volumetric resources needed to execute the set of actions in the goal state or AG.

92



3. The third objective function is makespan. The objective is to minimize the time re-

quired to execute a set of actions A.

MO-BOO Constraints

1. The exist constraint, 4.5, is a implication statement where B and A are actions. This

expression draws a logical implication between actions B and A. It captures the

relationship that building an armory to provide weapons to soldiers is unnecessary if

there is no barracks to train soldiers first. In this case there are two unary resources,

an armory and a barracks. The barracks produces combat units, and the armory

provides upgrades to weapons and armor to enhance the combat effectiveness of the

soldiers. In this particular situation, the exist constraint enforces that any action to

build an armory can only occur after a barracks is constructed or in existence. Note

that the action to build an armory does not utilize the unary resource of barracks to

perform any action, merely that it exist. The unary resource which must exist for an

action to occur will not also be the unary resource utilized by the action to execute.

For example, a command center in Starcraft is used to build workers. This means

the command center is a unary resource used by the action build worker. Though

the command center must exist in order for the action to be assigned to the command

center, this is not what is meant by the exist constraint. This constraint is stipulated

by the technology tree of an RTS game and requires that a unary resource must exist

in the agent’s current game state, but is not assigned work by the action requiring the

resource to exist.

2. Once more the cumulative constraint defined by equation 4.6 stipulates that given

a set of action |A| the agent can only execute actions within this set if the supply of

volumetric resources of the agent’s current game state, Lt, are large enough to support

the execution of the actions in set |A|. This constraint pertains to actions requiring
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sequential and concurrent execution and volumetric resources. In most RTS games

every action requires two unique volumetric resources.

3. The disjunctive constraint applies only to actions requiring unary resources, which

at least every action in most RTS games requires at least one unary resource. This

constraint requires that any two actions competing for a single unary resource must

satisfy a domain of times where an action B either starts after the end time of action

A or action A starts after the end time of action B. Essentially no two actions can be

executed simultaneously on any one unary resource. In order to execute concurrently

multiple copies of the unary resource must exist.

The first two objectives provide a path to the goal, however, this path is not required

to be optimal with respect to time. With the addition of the third objective, the path now

becomes optimal in terms of makespan. It is obvious that the first objective is intended to

ensure actions defined in the goal state are taken. The second objective can be viewed in

two ways depending on how a goal state is defined. In one way it is intended to ensure

resources are collected to satisfy the execution of the set of actions stipulated in objective

one, but if a goal is also defined in terms of volumetric resource levels, objective two also

ensures collection of those resources. Finally the third objective ensures that actions are

scheduled and executed to minimize time. Together these functions define a tradeoff surface

with respect to actions, resources, and time.

To visualize the tradeoff surface of our three objective functions we plot several Pareto

fronts produced by our strategic planner tool for the initial BA state and goals defined in

Table 4.7.
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Table 4.7: Initial State and formulated Goals.

Resources Initial State Small Goal Large Goal

armvp 0 - -

armmex 0 - -

armsolar 0 - -

armstumpy (tanks) 0 3 6

metal C.R 1.5 - -

metal Amt 1000 - -

energy C.R 25 - -

energy Amt 1000 - -

To produce the Pareto fronts, the strategic planning tool settings in Tables 4.8 and

4.9 are used because they have empirically demonstrated to provide computationally fast

and near-optimal results with respect to various BA strategies. These parameters tune the

MOEA and simulator so that the planner is suitable for online use by an RTS agent in

the BA game. The BitLength parameter is the action string length or genotype size of the

solutions. This relates to the maximum number of actions the planner can return for a

build-order. In most cases, the planner returns build-orders with a fraction of the actions

represented by the bit string.
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Table 4.8: Balanced Annihilation C++ Planner: NSGAII Parameters and planning tool

execution time - execution time is not a parameter, but a performance metric.

Goal Population Size Num Evals Mutation Rate Crossover Rate Bit Length Runs Execution Time (secs)

Small Goal 50 6000 1/k 0.9 k=60 5 6.09

Small Goal 50 6000 1/k 0.9 k=100 5 6.70

Small Goal 50 6000 1/k 0.9 k=200 5 14.32

Large Goal 50 6000 1/k 0.9 k=60 5 8.778

Large Goal 50 6000 1/k 0.9 k=100 5 9.92

Large Goal 50 6000 1/k 0.9 k=200 5 15.75

Table 4.9: Balanced Annihilation C++ Planner: Simulator Parameters

Metal Collect Rate Energy Collect Rate

2.04/sec per metal extract 20/sec per solar panel

The Pareto fronts computed are depicted in Figures 4.4 and 4.5. These fronts reveal

that the larger the action string or genotype length of the solution the closer each objective

function is to zero. This provides a decision surface that brings an agent closer to the goal.

For a decision maker, RTS agent or expert designer, the best solution from the solutions

presented in the Pareto fronts might be the one that minimizes objectives one and two to

zero and has the smallest constant value for objective three. In the Pareto fronts presented,

objective three is measured on the vertical axis; therefore, a point in objective space lying

on this axis reaches the goal, but may not be optimal with respect to makespan. Again this

is a tradeoff surface. Another, decision maker may decide that the solution that is close

to the goal, but executes faster than a solution lying on the vertical axis is a better choice.

For example (10, 0, 100) may be considered a better solution then (0, 0, 300) since only

ten additional seconds are required to reach the goal moving the actual makespan to 110

seconds over 300 seconds.
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Figure 4.4: Comparison of the Pareto fronts produced by the parameters in table 4.8 for the

small goal requiring 12 actions.
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Figure 4.5: Comparison of the Pareto fronts produced by the parameters in Table 4.8 for

the small goal requiring requiring 24 actions.
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The best build-orders with respect to makespan and reaching the goal state from the

Pareto fronts are presented in Table 4.10. These results reveal that the larger the genotype

the better the results, but the larger the computational time as noted in Table 4.8. The results

are from the best run of a set of five runs. Each result is calculated without injecting expert

build-orders into the population of the MOEA. The results presented are to demonstrate

the abilities of our build-order MOP and strategic planning tool, and are not necessarily the

best methods for reaching a goal. Table 4.10 shows that a good build-order plan for the

S mallGoal is 12 actions long and can be completed in simulation in 136 seconds. With

respect to the LargeGoal, the goal can be reached in 24 actions with a time of 198 seconds

to execute in the simulator. These action sizes reveal the planning window size each bit

length is able to perform well in. Empirically we have found that the 60bit planner operates

well with a online planning window size of 12-15 actions- note that this is without the aid

of expert build-order injection into the NSGAII population and an evaluation constraint of

six-thousand for online performance.

Table 4.10: Balanced Annihilation C++ Planner: Build-Order Results. The best build-

orders are marked with ∗.

Goal Bit Length Fitness Score Planning Window

Small Goal k=60 (0,0,150) -

Small Goal k=100 *(0,0,136) 12

Small Goal k=200 (0,0,142) -

Large Goal k=60 (0,0,322) -

Large Goal k=100 (0,0,232) -

Large Goal k=200 *(0,0,198) 24

4.4.2 Intermediate Planning vs Singular Planning .

In [19] the authors observe that planning improves or makespan decreases with the

use of intermediate goals versus a larger singular goal. Our observations utilizing our
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planning tool in BA support this finding. We first extract two planning goals from the

strategy executed by LJD for the BA Turtle strategy. This is achieved by examining LJD’s

player vector for actions and times. We then evaluate the build-order time produced by our

planning tool offline to reach goal two by first reaching goal one- intermediate planning.

We then utilize our planning tool to observe the time to reach the second goal without the

use of the first goal - singular planning. We observed that the agent reaches goal two faster

via intermediate planning. This points out the significance to how important goal ordering

is when planning in the RTS domain. For our experimentation we assume that the experts

we derive our goals from execute strategies with near-optimal goal ordering.

The results of this experiment in intermediate planning versus singular planning are

presented in Tables 4.11, 4.12. The results are important because they demonstrate that

producing expert level build-orders across properly ordered subgoals can result in expert

level execution of a larger goal. Therefore, near-optimal execution of a strategy is preserved

across well-ordered subgoals. Once again, we assume a near-optimal ordering of subgoals

can be derived from expert strategies and provided to our planner via CBR which we

demonstrate in objective three of our experiments.
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Table 4.11: Agent BOO - (SIM only) Intermediate Planning

Resources Initial State Goal One Goal Two

armvp 0 1 1

armmex 0 3 5

armsolar 0 4 4

armflash 0 0 4

armsam 0 0 2

armllt 0 0 2

armrl 0 0 2

metal C.R 1.5 7.62 11.7

metal Amt 1000 5.1746 26.117

energy C.R 25 105 105

energy Amt 1000 1200.00 43.166

Game Time 0 82 188

Table 4.12: Agent BOO - (SIM only) Singular Planning

Resources Initial State Goal Two

armvp 0 1

armmex 0 3

armsolar 0 3

armflash 0 4

armsam 0 2

armllt 0 2

armrl 0 2

metal C.R 1.5 7.62

metal Amt 1000 0.276

energy C.R 25 85

energy Amt 1000 235.799

Game Time 0 218

To further validate our conjecture that intermediate planning is better over singular

planning when a good ordering of subgoals is available, we execute the planner in game
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via our BOO agent. The results are presented in tables 4.13 and 4.14. Observe that the

in game time to reach goal two only varies by nine seconds between the two planning

techniques. This is due to the travel time variable of the BA simulator as well as the fact

that the intermediate planning technique produces an additional armsolar building. Also

note that their are subtle energy collection rate differences between the simulator game

states and real-time game states. This is because the simulator does not account for smaller

energy or metal rate collection increases introduced by additional units. It only factors

in metal extractors and solar panels, which are responsible for the majority of volumetric

resource collection.

Table 4.13: Agent BOO - (In-Game) Intermediate Planning

Resources Initial State Goal One Goal Two

armvp 0 1 0

armmex 0 3 0

armsolar 0 4 0

armflash 0 0 4

armsam 0 0 2

armllt 0 0 2

armrl 0 0 2

metal C.R 1.5 7.614 9.653

metal Amt 1000 192.388 58.85

energy C.R 25 105 107.5

energy Amt 1000 1200 28.23

Game Time 0 133 241
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Table 4.14: Agent BOO - (In-Game) Singular Planning

Resources Initial State Goal Two

armvp 0 1

armmex 0 3

armsolar 0 3

armflash 0 4

armsam 0 2

armllt 0 2

armrl 0 2

metal C.R 1.5 7.614

metal Amt 1000 0.305

energy C.R 25 87.5

energy Amt 1000 289.55

Game Time 0 249

In order to demonstrate the optimality of the build-order produced by Agent BOO via

our strategic planning tool, we introduce the goal completion times and final goal states

achieved by Agent LJD via simulation in table 4.15 and in-game in table 4.16.

Table 4.15: Agent John - (SIM only) Intermediate Planning

Resources Initial State Goal One Goal Two

armvp 0 1 1

armmex 0 3 5

armsolar 0 4 4

armflash 0 0 4

armsam 0 0 2

armllt 0 0 2

armrl 0 0 2

metal C.R 1.5 7.62 4.566

metal Amt 1000 8.1469 1.146

energy C.R 25 105 105

energy Amt 1000 1200 1200

Game Time 0 85 227
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Table 4.16: Agent John - (In-Game) Intermediate Planning

Resources Initial State Goal One Goal Two

armvp 0 1 0

armmex 0 3 0

armsolar 0 4 0

armflash 0 0 4

armsam 0 0 2

armllt 0 0 2

armrl 0 0 2

metal C.R 1.5 n/a n/a

metal Amt 1000 n/a n/a

energy C.R 25 n/a n/a

energy Amt 1000 n/a n/a

Game Time 0 133 276

4.4.3 Summary of Intermediate vs Singular Planning.

Section 4.4.2 provides insight into how our strategic planning tool can be utilized

by an RTS agent to optimize build-orders derived from expert strategies. Once again, the

optimality of a build-order produced by the planner relies on the number of actions required

to reach a goal, the action string length of the genotype, the strategy selected for execution,

and the ordering of subgoals derived from an expert strategy. In addition, we provide an

evaluation of the capabilities of our build-order MOP and strategic planning technique to

be utilized across the RTS genre - specifically for cumulative games like Starcraft and non-

cumulative games like BA.

4.5 Experimental Objective Three

The third experimental objective is to validate and emphasize the online characteristic

of our strategic planning tool as well as show how the planner provides an agent with the

means to overcome changes to the game state. In order to demonstrate the achievement of

this objective, we utilize the Spring RTS game engine. Building upon some of the work

104



in [61], we modified agent LJD to incorporate our online strategic planning tool, thereby

creating agent BOO. To demonstrate the planning capability of our planning tool we place

agent BOO against a NULL AI in the BA game. NULL AI is the name of an agent in

the Spring game that does nothing. The use of this agent allows agent LJD and agent

BOO to plan and execute their strategies in an environment where they are not in danger

of being under attack. The purpose of this is to constrain the game environment in order

to minimize outside influences on the agents’ build-orders to enable strategy execution

comparisons. Utilizing agent LJD as an expert player, in regards to strategy execution, we

establish a baseline to evaluate the performance of the strategic planning tool utilized by

our agent BOO.

We hypothesize that agent BOO should execute strategies at a more advanced player

skill level than agent LJD, as well as demonstrate optimality with respect to overall strategy

execution time. To make these assessments the actions of the agents are time stamped and

outputted to text files. These text files are converted into player vectors which follow

a strategy schema similar to the technique utilized by Weber [65]. Several of the BA

strategies defined in [61] are formatted as strategy schemas as Weber did. We compare

when and how much faster the agents execute actions to reach subgoals and the overall

time to execute the entire strategy. Again to measure skill level we apply the arithmetic and

geometric DBD functions to the player vectors.

As part of experimental objective three, we also want to demonstrate that agent BOO

adapts to a changing game state. We place BOO against agent E323 and observe how agent

BOO responds after assaults from enemy units to its home base - the CBR mechanism with

the planner should enable agent BOO to adapt. This experiment involves placing agent

BOO against a more advanced Spring Agent,relative to agent NULL AI, and observing

how agent BOO selects goals from the CBR system as it loses units and infrastructure to

combat and attacks.
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4.5.1 Evaluated Strategies.

In [61] the author describes eight strategies that can be utilized in the BA RTS game.

From those eight strategies we selected three to evaluate agent BOO. The strategies are

outlined in table 4.17. These strategies are selected because they provide more decision

making opportunities for agent BOO to plan across. From these three strategies and

observing the actions of agent LJD, a set of goals are defined. These goals respect the

ordering of subgoals captured by agent LJD’s player vector. The goals for each strategy

are translated into cases that define our CBR mechanism utilized by BOO. The CBR

mechanism is a large XML file consisting of cases for a single strategy only. As BOO

plans, the agent selects a goal from the CBR system based upon its current game state. It

then publishes a selected goal and its current game state to three XML files. The planner

is initiated by BOO as a subprocess and it reads in the data stored on the XML files. After

planning, the planner publishes a population of good solutions to a text file. From this set

of good solutions, agent BOO selects the ”best” one and begins execution. At this point,

agent BOO is acting as a decision maker. The agent is hard-coded by an expert of the BA

RTS domain, to prefer a build-order of the form (0, 0, x) unless a build-order of the form

(a, 0, y) satisfies the following expression:

a + y < x (4.8)

where x is objective three (makespan) of a unique solution, and a and y are the

objective one and objective three, respectively, of a different solution. This allows the

agent to favor build-orders that do not reach the goal, but have a better overall makespan

had the action string been able to encode the remaining actions required to complete the

build-order plan. Recall that a fitness value of (0, 0, x) describes a solution that reaches the

goal with a makespan of x.
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It is important to note that as the planner initializes its population it first reads in expert

build-orders from a text file and then fills the rest of the population with random solutions.

The only strategy to take advantage of expert build-orders is the Expansion strategy. This

expert text file of build-orders is filled with expert solutions that were discovered offline

by manually running the planner for various strategic goals and from previous iterations

of in game plans generated by agent BOO - this entailed post processing of agent BOO’s

game log files. However, it would be possible to insert these solutions via the CBR system

as they are written to cases as the agent determines good builds, but that technique is not

utilized for experimentation.

Table 4.17: Three Balanced Annihilation Strategies [61].

Metal Extractors(MX), Solar Panels (SP), Vehicle Plant(VP), K-Bot Lab (K-Lab), Light

Laser Tower (LLT), Defender Anti-Air Tower (RL).

Strategy Name Initial Economy Defensive Structures Combat Units

Tank Rush (3)MX:(3)SP:(1)VP 0 (3)Stumpy

Expansion (2)MX,(3)SP,(1)K-lab (8)LLT:(7)RL (1)Flea:(4)PeeWee:(2)Rocko:(4)Jethro:(2)Hammer:(8)Warrior

Turtle (3)MX:(4)SP:(1)VP (9)LLT:(9)RL (4)Flash:(3)Samson:(8)Stumpy:(3)Janus

1. Tank Rush: Requires building an initial economy and then producing attack waves

of three stumpy tanks. The overall objective is to minimize the time between attack

waves or release attack waves as quickly as possible.

2. Expansion: The agent is primarily focused on developing a large attack wave and

base defenses while expanding its volumetric resource control as quickly as possible.

3. Turtle: The focus of this strategy is to deliberately build base defenses and

infrastructure to support the production of units. Slowly the agent produces its first

attack wave.
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4.5.2 MOEA and Simulator Parameters.

Table 4.18: Balanced Annihilation BOO Planner: NSGAII Parameters

Strategy Population Size Num Evals Mutation Rate Crossover Rate Bit Length

Tank Rush 50 6000 1/k 0.9 k=60

Expansion 50 6000 1/k 0.9 k=80

Turtle 50 6000 1/k 0.9 k=80

Table 4.19: Balanced Annihilation BOO Planner: Simulator Parameters

Metal Collect Rate Energy Collect Rate

2.04/sec per metal extract 20/sec per solar panel

4.5.3 Experimental Objective Three Results.

The results presented in this section are derived from the best game out of five games

each agent played against the Spring Engine agent NULL AI. Agent NULL AI takes

no actions throughout the game session. This is to remove interruptions in build-order

executions as agent LJD and agent BOO execute their strategies. Our intention is to observe

which agent executes the strategies the fastest, under the assumption that an expert RTS

player always executes strategies faster than a player of a lower skill level.

Figures 4.6, 4.8, 4.10 capture the performance of agent BOO and agent LJD in

executing the three strategies Tank Rush, Expansion, and Turtle. These figures chart

the build-order time-line of the agents. The build-order time-line displays the goals and

ordering of goals of the various strategies as derived from agent LJD’s player vector - our

expert player in terms of strategy execution and compiling the CBR case set. The associated

blue and red arrows with each goal relate to the timing of a build-order executed by agents

LJD and BOO respectively. The images on the arrows depict the unit or building that was

produced by the agent at a time given by the timestamps above each constructed unit and

building. The overall time to complete a goal is captured at the head of the arrows. The
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agent that reached the goal the fastest owns a yellow star next to their arrow. Once again,

the time values are in-game timestamps retrieved from the player vector of each agent once

the game is completed. These timestamps have not been altered. Note that not all actions

for reaching a goal are displayed on the arrows. The arrows only identify the milestone

actions that define a particular strategy. For the Tank Rush strategy, additional actions that

are not milestones are identified with a red dashed line box around them. For the other two

strategies additional actions are left off entirely. This is explained more clearly for each

strategy as the figures are presented.

At the top of each build-order time-line diagram is a legend. The legend is a red and

blue arrow with the respective agent names contained in them. In addition, at the head

of these two arrows are the geometric DBD values the agents achieved in executing the

related strategy. The agent that achieves the best geometric DBD value possesses a yellow

star next to their name. If an agent produced more buildings or units than another agent

while executing the same strategy a + symbol and numeric quantity to the right of a unit or

building object is presented next to the agent’s name in the legend.

Directly below the build-order time-line figure is a plot featuring the arithmetic and

geometric DBD values achieved by the agents.

4.5.3.1 Tank Rush Strategy Analysis.

From the build-order time-line of the Tank Rush strategy displayed in Figure 4.6, it is

obvious that agent BOO executes the strategy faster than agent LJD. It can be observed in

Goal one that agent BOO decides to produce a vehicle plant earlier than agent LJD. This

allows the vehicle plant of agent BOO to start producing the first tank of assault wave one

13 seconds earlier than agent LJD. Notice, however, in Goal two that LJD still beats BOO in

developing the first tank. This is because agent BOO decides to go and produce additional

infrastructure to increase the volumetric resource collection rate in Goal two to decrease

production time; whereas, agent LJD is scripted to remain with the vehicle plant and assist
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it in producing tanks for all attack waves. Agent BOO then returns to the vehicle plant in

Goal two to assist in completing the remaining two tanks. With the increase in metal supply,

agent BOO is able to complete Goal two 3 seconds faster than agent LJD. After Goal two

agent BOO enters a brief planning phase. This planning phase introduces a brief delay, on

average between three to 6 seconds, to agent BOO performing any actual work. As soon as

the plan for Goal three is retrieved agent BOO resumes execution. Observe that agent BOO

once again decides to construct additional infrastructure to increase volumetric resource

supplies. By the end of Goal three, agent BOO is now 10 seconds ahead of agent LJD in

overall strategy execution. Finally, in Goal four agent BOO builds more infrastructure and

ends Goal four 20 seconds ahead of agent LJD with respect to overall strategy execution.

As identified in the legend of the Tank Rush strategy, agent BOO produces three additional

metal extractors versus agent LJD, and one more solar panel versus agent LJD.
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Figure 4.6: In game execution of the Tank Rush strategy. The data presented reflects the

best game out of five games played against the Spring Engine agent NULL AI for agents

LJD and BOO.

In Figure 4.7, the plot of the arithmetic DBD shows that agent BOO completes the

overall strategy execution faster than agent LJD. In addition, the geometric DBD reveals

that agent BOO shows a tighter timing consistency in reaching strategy milestones. This
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is because each tank produced is considered a strategy milestone including the release of

attack waves. The time required to construct the additional infrastructure was insignificant

in comparison to the speed in constructing the nine tanks for the first three attack waves.

Figure 4.7: The arithmetic and geometric DBD scores of agents LJD and BOO for the Tank

Rush strategy.

4.5.3.2 Expansion Strategy Analysis.

The build-order time-line Figure 4.8 of the Expansion strategy is slightly altered from

the diagram of the Tank Rush strategy. This is due to the fact that the Expansion strategy

is more complex than the Tank Rush strategy. By complex, we mean that the Expansion

strategy requires a larger number of diverse decision-making. In the Tank Strategy the

agents are only required to build Stumpy tanks and any required infrastructure to support
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the production of those units. In the Expansion strategy, observed in Table 4.17, the

strategy requires the production of five unique combat unit types and two unique defensive

structures, while also supporting volumetric resource production requirements. Notice, in

Figure 4.8 that the goals are described by unit pictures with a numerical value to their right

side. This translates as every image to the left of a number must be produced in a quantity

equal to that number.

Observe in Goal one the unique build-orders generated by both agents - agent BOO

decides to construct the k-bot factory as soon as possible. This enabled agent BOO to

start unit production 40 seconds earlier than agent LJD. Agent BOO completes Goal one

46 seconds before agent LJD. This trend continues all the way to Goal three where agent

BOO releases its first attack wave 54 seconds ahead of agent LJD. Agent BOO continues

to surpass agent LJD in goal completion time up until Goal six where agent LJD beats

agent BOO by 9 seconds. Observe, however, that agent BOO constructs an additional

air-defense tower in Goal six. In addition, agent BOO constructs an additional five solar

panels versus agent LJD’s additional metal extractor over the course of the entire execution

of the strategy. The times shown also include the planning time in which agent BOO is not

executing any actions for 3 to 6 seconds.

The DBD plot in figure 4.9 provides insight into the overall execution skill-level

of the agents in executing the Expansion strategy. According to the arithmetic DBD,

agent BOO executes the overall strategy faster than agent LJD; however, according to the

geometric DBD, agent LJD displays a higher expert timing consistency in reaching strategy

milestones. This is most likely due to the fact that agent BOO constructs six additional

units/buildings (five solar panels and one additional anti-air tower) more than agent LJD

over the course of the strategy execution. Also contributing to this is the planning time

between build-orders. It is expected that agent BOO should execute the strategy faster than

or as fast as agent LJD, which the results support.
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Figure 4.8: In game execution of the Expansion strategy. The data presented reflects the

best game out of five games played against the Spring Engine agent NULL AI for agents

LJD and BOO.
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Figure 4.9: The arithmetic and geometric DBD scores of agents LJD and BOO for the

Expansion strategy.

4.5.3.3 Turtle Strategy Analysis.

In executing the Turtle strategy, agent BOO once again prevails in executing the

overall strategy faster than agent LJD. Observe that by the 2nd Attack Wave, captured

as the last pair of arrows in the build-order time-line Figure 4.10, agent BOO has a 31

second lead on agent LJD. Agent BOO executes all goals faster than agent LJD. However,

note that agent BOO also produces three additional solar panels more than agent LJD.

According to arithmetic DBD values 4.11, agent BOO in fact executes the strategy faster

than agent LJD, however, agent LJD once again displays a faster timing consistency

between milestone strategy decisions according to geometric DBD. This is again due to the

additional structures produced by agent BOO and the planning time between build-orders.
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Figure 4.10: In game execution of the Turtle strategy. The data presented reflects the best

game out of five games played against the Spring Engine agent NULL AI for agents LJD

and BOO.
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Figure 4.11: The arithmetic and geometric DBD scores of agents LJD and BOO for the

Turtle strategy.

4.5.3.4 Visualizing Adaptability and Play.

As part of our third experimental objective, we observe agent BOO playing against

the Spring Engine AI E323. Agent Boo executes the Turtle strategy, which provides E323

the time necessary for it to produce a first attack wave of two PeeWee (light infantry)

bots to assault agent BOO’s base of operations. The first attack wave of E323 destroys

two volumetric resource collection buildings including a solar panel and a metal extractor.

After eliminating the threat and entering a new planning cycle, the strategic planner aids

agent BOO in deciding to reconstruct the lost infrastructure. The infrastructure is rebuilt

in time for agent BOO to achieve the first Goal of the Turtle strategy on time with respect

to agent LJD. This demonstrates the ability of the planner to plan in a dynamic game state.

This demonstrates that the agent is able to rationalize and plan according to changes in its

environment utilizing our planner. However, it is important to observe that if the buildings

are destroyed during a planning cycle, the planner would not adapt the agents build-order or

goals until the next planning cycle when game state information is provided to the planner.

Agent BOO does go on to defeat agent E323, however, we do not play enough games to
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provide a win/loss ratio. We only add this observation to demonstrate that agent BOO is

capable of playing a full RTS campaign against a fully functional Spring Engine AI and

even a human player.

With respect to achieving the expert capability of being adaptive, our agent is adaptive

to changing game states, but only changes its goals after each planning cycle utilizing the

CBR case selection mechanism. The selection mechanism examines the agent’s current

game state and then selects a case from the CBR case-set for the agent to plan toward.

Recall that a case represents an expert goal to plan toward. The goals themselves are

not being adjusted or adapted, rather a different goal is being selected to better match

the change in the agent’s game state. With the injection of expert solutions related to

the case retrieved from the CBR, the expert build-orders are adapted or refitted via our

MOEA to produce a new near-optimal build-order. This means that the adaptation of plans

occurs not as a separate step as is done in other CBR systems, but is apart of our planning

process. However, this adaptive quality is unlike other adaptive techniques such as goal

driven autonomy (GDA) as discussed in [68]. Goal driven autonomy empowers an agent

with the ability to adapt or modify goals by detecting discrepancies as the agent is planning.

4.5.3.5 Summary of Results.

A summary of the results presented in figures 4.6, 4.8, 4.10 is presented in table

4.20. As observed in table 4.20 agent LJD achieves a higher geometric DBD then agent

BOO for the Expansion and Turtle strategies. Recall that geometric DBD measures

the consistency of timing between milestone or key decisions from the strategy schema

executed by a player. With this in mind, notice that for the Expansion and Turtle strategies

agent BOO produces additional infrastructure as displayed in figures 4.8 and 4.10. These

additional builds and the planning time between build-orders introduced greater time

between milestone strategy decisions, which justifies why BOO would have a slightly

higher geometric DBD, but lower arithmetic DBD than LJD. In addition, the similar
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geometric DBD values signify that LJD and BOO are both executing a strategy at an Expert

level, but the arithmetic DBD signifies that BOO is a degree more of an expert than LJD

in terms of overall strategy execution. Agent BOO is in fact producing better build-orders

than the expert agent LJD via our strategic planner.

Table 4.20: Goal Strategy Execution Timeline versus NullAI. Waves identify the release

times of attack waves in seconds.

Agent Name Strategy Wave 1 (secs) Wave 2 Wave 3 Wave 4 Wave 5 Arth/Geo DBD

LJD Tank Rush 160.16 238.24 322.57 399.51 480.71 18.71/1.12

BOO Tank Rush 157.49 227.57 303.27 353.07 423.5 15.69/0.94

LJD Expansion 573.08 838.89 - - - 12.9/0.98

BOO Expansion 519.90 847.96 - - - 12.8/0.99

LJD Turtle 622.33 865.01 - - - 13.73/0.978

BOO Turtle 617.52 833.91 - - - 13.02/0.985

4.6 Summary of Experimental Results

Chapter 4 has validated our approach to online strategic planning for RTS agents.

Through the use of the MO-BOO problem, a generic RTS strategic decision-making

simulator framework, a MOEA, and CBR we have successfully designed and implemented

a new AI technique for implementing the strategic manager of a multi-scale agent. Our

design supports online planning in a fully operational RTS game as demonstrated with

agent BOO. Agent BOO is capable of planning through the first technology level of the

RTS BA game, which includes 21 possible actions, at a performance level greater than or

equal to an expert scripted AI. This is achieved without bounding actions or constraining

the RTS decision space.
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V. Conclusion and Final Remarks

In chapter one we presented our research objectives and set out to achieve the

following three target objectives:

1. Develop (design, implement and validate) an on-line capability to determine the

skill level of a RTS player

2. Develop an online RTS multi-objective AI planning algorithm for generating

human expert level RTS build-orders [22]

3. Integrate on-line planning tool with an agent in the Spring RTS game engine

Balanced Annihilation game [3] and validate via simulation

Through our experimental objectives outlined in chapter 4 and reprinted below, we

evaluate each one of our target research objectives.

1. Experimental objective one of this work is to validate that the mathematical

model of the build-order problem we formulated is capable of planning in

the RTS domain. This is demonstrated across planning goals for Starcraft:

Broodwars and Balanced Annihilation.

2. Experimental objective two is to demonstrate the capabilities of the planning

tool across varying parameter settings. This is conceptualized via a Pareto front.

3. Experimental objective three is to demonstrate that our strategic planning tool,

utilizing the mathematical model, can be utilized as an online planning tool by

a RTS agent to play through a full RTS game at or near an expert level.

4. Experimental objective four is to validate a method for determining player skill-

level in an RTS game. This objective is achieved in connection with the first three

experimental objectives.
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Experimental objective one demonstrates the ability of our MO-BOO problem

formulation to effectively approximate the build-order problem for cumulative and non-

cumulative economy RTS games like Starcraft and BA. In addition, experimental objective

one also validates our strategic planning tool’s ability to reach user defined goals via

simulation and a MOEA without the use of expert data. Experimental objective one

confirms that we have achieved research objective 2a.

Experimental objective two evaluates the performance of our strategic planning design

for various parameter settings for the two RTS simulators and NSGAII algorithm. It also

provides a depiction of the Pareto front for the RTS MO-BOO problem. This experiment

validates the ability of our planner to reach goals in both an offline and online state. It

further reinforces the use of intermediate planning over singular planning as contended in

[19]. This experiment supports research objectives 2a and 2g.

Experimental objective three validates the use of our strategic planning tool as an

online planning capability for RTS multi-scale agents. It demonstrates the ability of our

RTS agent BOO to perform at or exceed the skill level of an expert scripted RTS agent

from which its goals and goal-ordering are derived. The significance of this is that it is

possible for an RTS agent utilizing our planning tool with CBR to perform better than or

equal (in terms of strategy execution) to the expert players from which the CBR case set is

compiled. This experiment also validates the use of our skill-level metric DBD as a means

of measuring skill-level relative to a set of known experts. Experimental objective three

confirms the achievement of research objectives 1a and 2g.

5.1 Contributions

We provide the RTS research community with a concise mathematical model of the

RTS build-order problem. The build-order optimization problem consists of three objective

functions and three constraints and is derived from the efforts of a multitude of researchers

with strong influences from [71], [20], [22].
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In addition we provide two generic RTS simulator frameworks and Python implemen-

tations for simulating strategic decision making in RTS games including games like Star-

craft I and II, Age of Empires, Wargus, Total Annihilation, and Balanced Annihilation. We

also introduce the idea of cumulative and non-cumulative economy RTS games to distin-

guish the economical differences between games like Starcraft versus BA. In combination

with the JmetalCpp framework and our XML schema files packaged with the simulators,

we provide a build-order planning tool for non-cumulative economy games like Total Anni-

hilation and BA, and for cumulative economy games like Starcraft and AOE. By modifying

simple XML schema files any researcher can continue with our work in their selected RTS

game including Wargus. The planners can be utilized offline or integrated into the games

for online use - note that the code must be translated into C++ or Java to reduce computa-

tional costs for online use as we demonstrated for BA in experimental objective three.

Finally, we provide a unique, online multi-objective approach to strategic planning

in RTS games. Our strategic planner blends ideas from behavioral AI approaches and

optimization approaches. It integrates our build-order mathematical model, our simulators,

a MOEA, and CBR to produce expert level or near-optimal build-orders for an agent in

the Spring RTS game engine in real-time. Through experimental objectives one through

four we have demonstrated the ability of our agent BOO to execute strategies at an expert

level relative to Agent LJD and the BA game. Our agent effectively enters the game with

no domain knowledge, but through our mathematical model and CBR is able to produce

expert level build-orders that lead agent BOO to execute a strategy faster than the expert

from which the goals and goal ordering are derived. In addition, bounding the search space

which is done for global search algorithms like A* or DFS is not required. This reduces

the complexity of tuning the design for implementation in any RTS game.

In addition to the items mentioned above, we also provide a unique and needed method

to measuring skill level of RTS players. Our method is effective for measuring the ability
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of a player to execute a strategy. We have effectively developed an approach for measuring

strategic skill level, but not for measuring tactical skill level. This method can be utilized

online during game play or offline to derive a high-level model of the players skill level

with respect to strategy execution. This information can be provided to an agent in order to

adjust the game experience for the human player based upon their strategic skill level - this

is necessary to ensure a game is both fun and challenging for players at any skill level and

for education purposes in order to keep students engaged [35]

5.2 Future Work

Future efforts by our team and future members include the following list:

1. Enhance the command set defined in the XML command schema file of BA to

encompass building through all tech levels.

2. Enable Agent BOO and Agent LJD to utilize construction vehicles to their full

capacity - currently they can only assist the commander in the commander’s

construction projects.

3. Enhance the RTS simulators with map information to eliminate the travel time

variable.

4. Enhance the CBR goal selection mechanism of the Agent with a Goal Autonomy

Driven approach similar to the one described in [68] to produce a more adaptive

agent.

5. Parallelize our strategic planning tool to further reduce computation time required to

return a near-optimal build-order.

6. Develop a robust tactical planning manager for agent BOO to enhance the ability of

BOO to play at an expert level.

123



7. Incorporate a scouting manager to allow agent BOO to adapt to opponent decision-

making or strategy

8. Dynamic content injection into RTS game for the purposes of decision-making

education

9. Adjustable difficulty settings based upon player’s dynamic skill to support a

challenging and fun educational experience

10. Tailored feedback to player in real-time to enhance critical decision-making

education

5.3 Final Remarks

We are in the process of developing a robust RTS AI framework for Air Force

education and training purposes. As part of this goal we are designing and implementing a

multi-scale agent as the centerpiece of our training system. With the conclusion of this work

we now have a robust strategic planning manager and will continue forward to incorporate

a robust tactical and scouting manager. Once we have an agent capable of playing an RTS

game at or near an Expert level, we seek to utilize this expert agent in an education system

to evaluate a player in real-time and introduce new content or change the state of the game

for the benefit of educational objectives.
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Appendix: Starcraft Simulator XML Schema Files
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C:\Users\Jason\Desktop\StarCraft v6.2\RTS_Simulator\command.xml Saturday, March 01, 2014 8:17 PM

STARCRAFT COMMAND.XML SCHEMA FILE
<command>

<action>
<name>Build_Barracks</name>
<duration>80</duration>
<volumetric_dictionary>

<volumetric key="Mineral" value="150"></volumetric>
</volumetric_dictionary>
<unary_list>

<unary>Worker</unary>
</unary_list>
<exist_list>

</exist_list>
<effect_list>

<effect key="Increment" value="Barracks_Bldg"></effect>
</effect_list>

</action>

<action>
<name>Build_CmdCenter</name>
<duration>120</duration>
<volumetric_dictionary>

<volumetric key="Mineral" value="400"></volumetric>
</volumetric_dictionary>
<unary_list>

<unary>Worker</unary>
</unary_list>
<exist_list>

</exist_list>
<effect_list>

<effect key="Increment" value="Command_Center"></effect>
</effect_list>

</action>

<action>
<name>Build_Refinery</name>
<duration>40</duration>
<volumetric_dictionary>

<volumetric key="Mineral" value="100"></volumetric>
</volumetric_dictionary>
<unary_list>

<unary>Worker</unary>
</unary_list>
<exist_list>

</exist_list>
<effect_list>

<effect key="Increment" value="Refinery_Bldg"></effect>
</effect_list>

</action>

-1-



C:\Users\Jason\Desktop\StarCraft v6.2\RTS_Simulator\command.xml Saturday, March 01, 2014 8:17 PM

<action>
<name>Build_SupplyDepot</name>
<duration>40</duration>
<volumetric_dictionary>

<volumetric key="Mineral" value="100"></volumetric>
</volumetric_dictionary>
<unary_list>

<unary>Worker</unary>
</unary_list>
<exist_list>

</exist_list>
<effect_list>

<effect key="Accumulate_Fixed" value="Supply"></effect>
</effect_list>

</action>

<action>
<name>Build_Worker</name>
<duration>20</duration>
<volumetric_dictionary>

<volumetric key="Mineral" value="50"></volumetric>
<volumetric key="Supply" value="1"></volumetric>

</volumetric_dictionary>
<unary_list>

<unary>Command_Center</unary>
</unary_list>
<exist_list>

</exist_list>
<effect_list>

<effect key="Increment" value="Worker"></effect>
</effect_list>

</action>

<action>
<name>Build_Marine</name>
<duration>20</duration>
<volumetric_dictionary>

<volumetric key="Mineral" value="50"></volumetric>
<volumetric key="Supply" value="1"></volumetric>

</volumetric_dictionary>
<unary_list>

<unary>Barracks_Bldg</unary>
</unary_list>
<exist_list>

</exist_list>
<effect_list>

<effect key="Unit_Increment" value="Marine"></effect>
</effect_list>

</action>

-2-



C:\Users\Jason\Desktop\StarCraft v6.2\RTS_Simulator\command.xml Saturday, March 01, 2014 8:17 PM

<action>
<name>Mineral</name>
<duration>0</duration>
<volumetric_dictionary>
</volumetric_dictionary>
<unary_list>

<unary>Worker</unary>
</unary_list>
<exist_list>

<exist>Command_Center</exist>
</exist_list>
<effect_list>

<effect key="Hold" value="Worker"></effect>
<effect key="Accumulate" value="Mineral"></effect>

</effect_list>
</action>

<action>
<name>Gas</name>
<duration>0</duration>
<volumetric_dictionary>
</volumetric_dictionary>
<unary_list>

<unary>Worker</unary>
</unary_list>
<exist_list>

<exist>Refinery_Bldg</exist>
</exist_list>
<effect_list>

<effect key="Hold" value="Worker"></effect>
<effect key="Accumulate" value="Gas"></effect>

</effect_list>
</action>

</command>

-3-



C:\Users\Jason\Desktop\StarCraft v6.2\RTS_Simulator\unary_resource.xml Saturday, March 01, 2014 8:19 PM

STARCRAFT UNARY_RESOURCE.XML SCHEMA FILE
<unary_resource>

<unary name="Command_Center" exist="1"></unary>
<unary name="Barracks_Bldg" exist="0"></unary>
<unary name="Refinery_Bldg" exist="0"></unary>
<unary name="Worker" exist="5"></unary>

</unary_resource>

-1-



C:\Users\Jason\Desktop\StarCraft v6.2\RTS_Simulator\vol_resource.xml Saturday, March 01, 2014 8:21 PM

STARCRAFT VOL_RESOURCE.XML SCHEMA FILE
<vol_resource>

<volumetric name="Mineral" rate="1.35" init_amt="100"></volumetric>
<volumetric name="Gas" rate="2.1" init_amt="0"></volumetric>
<volumetric name="Supply" rate="-10" init_amt="5"></volumetric>

</vol_resource>

-1-



C:\Users\Jason\Desktop\StarCraft v6.2\RTS_Simulator\combat_unit.xml Saturday, March 01, 2014 8:21 PM

STARCRAFT COMBAT_UNIT.XML SCHEMA FILE
<combat_unit>

<unit name="Marine" init_amt="0"></unit>

</combat_unit>

-1-



C:\Users\Jason\Desktop\StarCraft v6.2\RTS_Simulator\unary_goal.xml Saturday, March 01, 2014 8:22 PM

STARCRAFT UNARY_GOAL.XML SCHEMA FILE
<unary_resource>

<unary name="Command_Center" exist="1" minCost="400" gasCost="0" suppCost="0" durAmt ="120"
></unary>
<unary name="Barracks_Bldg" exist="0" minCost="150" gasCost="0" suppCost="0" durAmt = "80"
></unary>
<unary name="Refinery_Bldg" exist="0" minCost="100" gasCost="0" suppCost="0" durAmt ="40"
></unary>
<unary name="Worker" exist="5" minCost = "50" gasCost ="0" suppCost="1" durAmt="20"></unary>

</unary_resource>

-1-



C:\Users\Jason\Desktop\StarCraft v6.2\RTS_Simulator\vol_goal.xml Saturday, March 01, 2014 8:20 PM

STARCRAFT VOL_GOAL.XML SCHEMA FILE
<vol_resource>

<volumetric name="Mineral" rate="1.0" init_amt="200"></volumetric>
<volumetric name="Gas" rate="1.0" init_amt="200"></volumetric>
<volumetric name="Supply" rate="-10" init_amt="0"></volumetric>

</vol_resource>
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C:\Users\Jason\Desktop\StarCraft v6.2\RTS_Simulator\unit_goal.xml Saturday, March 01, 2014 8:20 PM

STARCRAFT UNIT_GOAL.XML SCHEMA FILE
<combat_unit>

<unit name="Marine" exist="7.0" minCost="50" gasCost="0" suppCost="1" durAmt="20"></unit>
</combat_unit>

-1-
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